mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-11-27 06:30:28 +08:00
fix compile errors in Tridiagonalization and in doc examples
This commit is contained in:
parent
dbd9c5fd50
commit
26c2afd55a
@ -97,15 +97,15 @@ template<typename _MatrixType> class Tridiagonalization
|
||||
typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType;
|
||||
|
||||
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
||||
typename Diagonal<MatrixType,0>::RealReturnType,
|
||||
Diagonal<MatrixType,0>
|
||||
const typename Diagonal<const MatrixType>::RealReturnType,
|
||||
const Diagonal<const MatrixType>
|
||||
>::type DiagonalReturnType;
|
||||
|
||||
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
||||
typename Diagonal<
|
||||
Block<MatrixType,SizeMinusOne,SizeMinusOne>,0 >::RealReturnType,
|
||||
Diagonal<
|
||||
Block<MatrixType,SizeMinusOne,SizeMinusOne>,0 >
|
||||
const typename Diagonal<
|
||||
Block<const MatrixType,SizeMinusOne,SizeMinusOne> >::RealReturnType,
|
||||
const Diagonal<
|
||||
Block<const MatrixType,SizeMinusOne,SizeMinusOne> >
|
||||
>::type SubDiagonalReturnType;
|
||||
|
||||
/** \brief Return type of matrixQ() */
|
||||
@ -292,7 +292,7 @@ template<typename _MatrixType> class Tridiagonalization
|
||||
*
|
||||
* \sa matrixT(), subDiagonal()
|
||||
*/
|
||||
const DiagonalReturnType diagonal() const;
|
||||
DiagonalReturnType diagonal() const;
|
||||
|
||||
/** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
|
||||
*
|
||||
@ -304,7 +304,7 @@ template<typename _MatrixType> class Tridiagonalization
|
||||
*
|
||||
* \sa diagonal() for an example, matrixT()
|
||||
*/
|
||||
const SubDiagonalReturnType subDiagonal() const;
|
||||
SubDiagonalReturnType subDiagonal() const;
|
||||
|
||||
protected:
|
||||
|
||||
@ -314,7 +314,7 @@ template<typename _MatrixType> class Tridiagonalization
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
const typename Tridiagonalization<MatrixType>::DiagonalReturnType
|
||||
typename Tridiagonalization<MatrixType>::DiagonalReturnType
|
||||
Tridiagonalization<MatrixType>::diagonal() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
|
||||
@ -322,12 +322,12 @@ Tridiagonalization<MatrixType>::diagonal() const
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
const typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
|
||||
typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
|
||||
Tridiagonalization<MatrixType>::subDiagonal() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
|
||||
Index n = m_matrix.rows();
|
||||
return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal();
|
||||
return Block<const MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal();
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
@ -11,10 +11,10 @@ firstTwo(MatrixBase<Derived>& v)
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
const Eigen::VectorBlock<Derived, 2>
|
||||
const Eigen::VectorBlock<const Derived, 2>
|
||||
firstTwo(const MatrixBase<Derived>& v)
|
||||
{
|
||||
return Eigen::VectorBlock<Derived, 2>(v.derived(), 0);
|
||||
return Eigen::VectorBlock<const Derived, 2>(v.derived(), 0);
|
||||
}
|
||||
|
||||
int main(int, char**)
|
||||
|
@ -11,10 +11,10 @@ segmentFromRange(MatrixBase<Derived>& v, int start, int end)
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
const Eigen::VectorBlock<Derived>
|
||||
const Eigen::VectorBlock<const Derived>
|
||||
segmentFromRange(const MatrixBase<Derived>& v, int start, int end)
|
||||
{
|
||||
return Eigen::VectorBlock<Derived>(v.derived(), start, end-start);
|
||||
return Eigen::VectorBlock<const Derived>(v.derived(), start, end-start);
|
||||
}
|
||||
|
||||
int main(int, char**)
|
||||
|
@ -4,7 +4,7 @@ cout << "Here is a random self-adjoint 4x4 matrix:" << endl << A << endl << endl
|
||||
|
||||
Tridiagonalization<MatrixXcd> triOfA(A);
|
||||
MatrixXd T = triOfA.matrixT();
|
||||
cout << "The tridiagonal matrix T is:" << endl << triOfA.matrixT() << endl << endl;
|
||||
cout << "The tridiagonal matrix T is:" << endl << T << endl << endl;
|
||||
|
||||
cout << "We can also extract the diagonals of T directly ..." << endl;
|
||||
VectorXd diag = triOfA.diagonal();
|
||||
|
Loading…
Reference in New Issue
Block a user