Add cholesky's members to MatrixBase

Various documentation improvements including new snippets (AngleAxis and Cholesky)
This commit is contained in:
Gael Guennebaud 2008-07-19 22:59:05 +00:00
parent 6e2c53e056
commit 269f683902
11 changed files with 58 additions and 7 deletions

View File

@ -66,7 +66,7 @@ template<typename MatrixType> class Cholesky
bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }
template<typename Derived>
typename Derived::Eval solve(MatrixBase<Derived> &b);
typename Derived::Eval solve(const MatrixBase<Derived> &b) const;
void compute(const MatrixType& matrix);
@ -110,10 +110,14 @@ void Cholesky<MatrixType>::compute(const MatrixType& a)
/** \returns the solution of A x = \a b using the current decomposition of A.
* In other words, it returns \code A^-1 b \endcode computing
* \code L^-* L^1 b \endcode from right to left.
*
* Example: \include Cholesky_solve.cpp
* Output: \verbinclude Cholesky_solve.out
*
*/
template<typename MatrixType>
template<typename Derived>
typename Derived::Eval Cholesky<MatrixType>::solve(MatrixBase<Derived> &b)
typename Derived::Eval Cholesky<MatrixType>::solve(const MatrixBase<Derived> &b) const
{
const int size = m_matrix.rows();
ei_assert(size==b.size());
@ -121,5 +125,14 @@ typename Derived::Eval Cholesky<MatrixType>::solve(MatrixBase<Derived> &b)
return m_matrix.adjoint().template extract<Upper>().inverseProduct(matrixL().inverseProduct(b));
}
/** \cholesky_module
* \returns the Cholesky decomposition of \c *this
*/
template<typename Derived>
inline const Cholesky<typename ei_eval<Derived>::type>
MatrixBase<Derived>::cholesky() const
{
return Cholesky<typename ei_eval<Derived>::type>(derived());
}
#endif // EIGEN_CHOLESKY_H

View File

@ -77,7 +77,7 @@ template<typename MatrixType> class CholeskyWithoutSquareRoot
}
template<typename Derived>
typename Derived::Eval solve(MatrixBase<Derived> &b);
typename Derived::Eval solve(const MatrixBase<Derived> &b) const;
void compute(const MatrixType& matrix);
@ -127,7 +127,7 @@ void CholeskyWithoutSquareRoot<MatrixType>::compute(const MatrixType& a)
*/
template<typename MatrixType>
template<typename Derived>
typename Derived::Eval CholeskyWithoutSquareRoot<MatrixType>::solve(MatrixBase<Derived> &vecB)
typename Derived::Eval CholeskyWithoutSquareRoot<MatrixType>::solve(const MatrixBase<Derived> &vecB) const
{
const int size = m_matrix.rows();
ei_assert(size==vecB.size());
@ -140,5 +140,14 @@ typename Derived::Eval CholeskyWithoutSquareRoot<MatrixType>::solve(MatrixBase<D
);
}
/** \cholesky_module
* \returns the Cholesky decomposition without square root of \c *this
*/
template<typename Derived>
inline const CholeskyWithoutSquareRoot<typename ei_eval<Derived>::type>
MatrixBase<Derived>::choleskyNoSqrt() const
{
return derived();
}
#endif // EIGEN_CHOLESKY_WITHOUT_SQUARE_ROOT_H

View File

@ -532,6 +532,10 @@ template<typename Derived> class MatrixBase
void computeInverse(typename ei_eval<Derived>::type *result) const;
Scalar determinant() const;
/////////// Cholesky module ///////////
const Cholesky<typename ei_eval<Derived>::type> cholesky() const;
const CholeskyWithoutSquareRoot<typename ei_eval<Derived>::type> choleskyNoSqrt() const;
/////////// QR module ///////////

View File

@ -96,6 +96,8 @@ void ei_cache_friendly_product(
template<typename ExpressionType, bool CheckExistence = true> class Inverse;
template<typename MatrixType> class QR;
template<typename MatrixType> class Cholesky;
template<typename MatrixType> class CholeskyWithoutSquareRoot;
// Geometry module:
template<typename Lhs, typename Rhs> class Cross;

View File

@ -29,7 +29,7 @@
*
* \class AngleAxis
*
* \brief Represents a 3D rotation as a rotation angle around an arbitray 3D axis
* \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
*
* \param _Scalar the scalar type, i.e., the type of the coefficients.
*
@ -37,7 +37,14 @@
* \li \c AngleAxisf for \c float
* \li \c AngleAxisd for \c double
*
* \sa class Quaternion, class Transform
* \addexample AngleAxisForEuler \label How to define a rotation from Euler-angles
*
* Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
* mimic Euler-angles. Here is an example:
* \include AngleAxis_mimic_euler.cpp
* Output: \verbinclude AngleAxis_mimic_euler.out
*
* \sa class Quaternion, class Transform, MatrixBase::UnitX()
*/
template<typename _Scalar>
class AngleAxis

View File

@ -199,6 +199,7 @@ TAB_SIZE = 8
ALIASES = "only_for_vectors=This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column." \
"array_module=This is defined in the %Array module. \code #include <Eigen/Array> \endcode" \
"lu_module=This is defined in the %LU module. \code #include <Eigen/LU> \endcode" \
"cholesky_module=This is defined in the %Cholesky module. \code #include <Eigen/Cholesky> \endcode" \
"qr_module=This is defined in the %QR module. \code #include <Eigen/QR> \endcode" \
"geometry_module=This is defined in the %Geometry module. \code #include <Eigen/Geometry> \endcode" \
"addexample=\anchor" \

View File

@ -4,7 +4,7 @@ echo "namespace Eigen {"
echo "/** \page ExampleList"
echo "<h1>Selected list of examples</h1>"
grep \\addexample $1/Eigen/* -R | cut -d \\ -f 2- | \
grep \\addexample $1/Eigen/src/*/*.h -R | cut -d \\ -f 2- | \
while read example;
do
anchor=`echo "$example" | cut -d " " -f 2`

View File

@ -0,0 +1,4 @@
Matrix3f m = AngleAxisf(0.25*M_PI, Vector3f::UnitX())
* AngleAxisf(0.5*M_PI, Vector3f::UnitY())
* AngleAxisf(0.33*M_PI, Vector3f::UnitZ());
cout << m << endl;

View File

@ -20,4 +20,6 @@ ADD_CUSTOM_COMMAND(
ARGS >${CMAKE_CURRENT_BINARY_DIR}/${snippet}.out
)
ADD_DEPENDENCIES(all_snippets ${compile_snippet_target})
set_source_files_properties(${CMAKE_CURRENT_BINARY_DIR}/${compile_snippet_src}
PROPERTIES OBJECT_DEPENDS ${snippet_src})
ENDFOREACH(snippet_src)

View File

@ -0,0 +1,6 @@
typedef Matrix<float,Dynamic,2> DataMatrix;
// let's generate some samples on the 3D plane of equation z = 2x+3y (with some noise)
DataMatrix samples = DataMatrix::random(12,2);
VectorXf elevations = 2*samples.col(0) + 3*samples.col(1) + VectorXf::random(12)*0.1;
// and let's solve samples * x = elevations in least square sense:
cout << (samples.adjoint() * samples).cholesky().solve((samples.adjoint()*elevations).eval()) << endl;

View File

@ -1,8 +1,11 @@
#include <Eigen/Core>
#include <Eigen/Array>
#include <Eigen/LU>
#include <Eigen/Cholesky>
#include <Eigen/Geometry>
USING_PART_OF_NAMESPACE_EIGEN
using namespace Eigen;
using namespace std;
int main(int, char**)