mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
add a debug mechanism to compute the number of intermediate evaluations (only for dynamic size)
This commit is contained in:
parent
508f06ac0f
commit
264fe82c65
@ -360,7 +360,7 @@ class Matrix
|
||||
/** \internal */
|
||||
Matrix(ei_constructor_without_unaligned_array_assert)
|
||||
: m_storage(ei_constructor_without_unaligned_array_assert())
|
||||
{}
|
||||
{ _check_template_params(); }
|
||||
#endif
|
||||
|
||||
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
|
||||
@ -436,7 +436,10 @@ class Matrix
|
||||
/** Copy constructor with in-place evaluation */
|
||||
template<typename OtherDerived,typename OtherEvalType>
|
||||
EIGEN_STRONG_INLINE Matrix(const ReturnByValue<OtherDerived,OtherEvalType>& other)
|
||||
{ other.evalTo(*this); }
|
||||
{
|
||||
_check_template_params();
|
||||
other.evalTo(*this);
|
||||
}
|
||||
/** Destructor */
|
||||
inline ~Matrix() {}
|
||||
|
||||
@ -454,6 +457,7 @@ class Matrix
|
||||
EIGEN_STRONG_INLINE Matrix(const AnyMatrixBase<OtherDerived> &other)
|
||||
: m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
|
||||
{
|
||||
_check_template_params();
|
||||
*this = other;
|
||||
}
|
||||
|
||||
@ -587,17 +591,21 @@ class Matrix
|
||||
|
||||
static EIGEN_STRONG_INLINE void _check_template_params()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(((_Rows >= _MaxRows)
|
||||
&& (_Cols >= _MaxCols)
|
||||
&& (_MaxRows >= 0)
|
||||
&& (_MaxCols >= 0)
|
||||
&& (_Rows <= Dynamic)
|
||||
&& (_Cols <= Dynamic)
|
||||
&& (_MaxRows == _Rows || _Rows==Dynamic)
|
||||
&& (_MaxCols == _Cols || _Cols==Dynamic)
|
||||
&& ((_MaxRows==Dynamic?1:_MaxRows)*(_MaxCols==Dynamic?1:_MaxCols)<Dynamic)
|
||||
&& (_Options & (DontAlign|RowMajor)) == _Options),
|
||||
INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
||||
#ifdef EIGEN_DEBUG_MATRIX_CTOR
|
||||
EIGEN_DEBUG_MATRIX_CTOR(Matrix);
|
||||
#endif
|
||||
|
||||
EIGEN_STATIC_ASSERT(((_Rows >= _MaxRows)
|
||||
&& (_Cols >= _MaxCols)
|
||||
&& (_MaxRows >= 0)
|
||||
&& (_MaxCols >= 0)
|
||||
&& (_Rows <= Dynamic)
|
||||
&& (_Cols <= Dynamic)
|
||||
&& (_MaxRows == _Rows || _Rows==Dynamic)
|
||||
&& (_MaxCols == _Cols || _Cols==Dynamic)
|
||||
&& ((_MaxRows==Dynamic?1:_MaxRows)*(_MaxCols==Dynamic?1:_MaxCols)<Dynamic)
|
||||
&& (_Options & (DontAlign|RowMajor)) == _Options),
|
||||
INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
||||
}
|
||||
|
||||
|
||||
|
@ -306,13 +306,14 @@ struct ei_selfadjoint_product_returntype<Lhs,LhsMode,false,Rhs,RhsMode,false>
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dst.resize(m_lhs.rows(), m_rhs.cols());
|
||||
dst.setZero();
|
||||
evalTo(dst,1);
|
||||
}
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst, Scalar alpha) const
|
||||
{
|
||||
ei_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
|
||||
|
||||
const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
|
||||
const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);
|
||||
|
||||
|
@ -148,13 +148,14 @@ struct ei_triangular_product_returntype<Mode,true,Lhs,false,Rhs,true>
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dst.resize(m_lhs.rows(), m_rhs.cols());
|
||||
dst.setZero();
|
||||
evalTo(dst,1);
|
||||
}
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst, Scalar alpha) const
|
||||
{
|
||||
ei_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
|
||||
|
||||
const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
|
||||
const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);
|
||||
|
||||
|
@ -115,6 +115,7 @@ ei_add_test(product_syrk ${EI_OFLAG})
|
||||
ei_add_test(product_trmv ${EI_OFLAG})
|
||||
ei_add_test(product_trmm ${EI_OFLAG})
|
||||
ei_add_test(product_trsm ${EI_OFLAG})
|
||||
ei_add_test(product_notemporary ${EI_OFLAG})
|
||||
ei_add_test(bandmatrix)
|
||||
ei_add_test(cholesky " " "${GSL_LIBRARIES}")
|
||||
ei_add_test(lu ${EI_OFLAG})
|
||||
|
119
test/product_notemporary.cpp
Normal file
119
test/product_notemporary.cpp
Normal file
@ -0,0 +1,119 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
static int nb_temporaries;
|
||||
|
||||
#define EIGEN_DEBUG_MATRIX_CTOR(MTYPE) { \
|
||||
if(MTYPE::SizeAtCompileTime==Dynamic) \
|
||||
nb_temporaries++; \
|
||||
}
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/Array>
|
||||
|
||||
#define VERIFY_EVALUATION_COUNT(XPR,N) {\
|
||||
nb_temporaries = 0; \
|
||||
XPR; \
|
||||
if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
|
||||
VERIFY( (#XPR) && nb_temporaries==N ); \
|
||||
}
|
||||
|
||||
template<typename MatrixType> void product_notemporary(const MatrixType& m)
|
||||
{
|
||||
/* This test checks the number of tempories created
|
||||
* during the evaluation of a complex expression */
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
|
||||
typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
|
||||
typedef Matrix<Scalar, Dynamic, Dynamic, RowMajor> RowMajorMatrixType;
|
||||
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
MatrixType m1 = MatrixType::Random(rows, cols),
|
||||
m2 = MatrixType::Random(rows, cols),
|
||||
m3(rows, cols);
|
||||
RowVectorType rv1 = RowVectorType::Random(rows), rvres(rows);
|
||||
ColVectorType vc2 = ColVectorType::Random(cols), cvres(cols);
|
||||
RowMajorMatrixType rm3(rows, cols);
|
||||
|
||||
Scalar s1 = ei_random<Scalar>(),
|
||||
s2 = ei_random<Scalar>(),
|
||||
s3 = ei_random<Scalar>();
|
||||
|
||||
int c0 = ei_random<int>(4,cols-8),
|
||||
c1 = ei_random<int>(8,cols-c0),
|
||||
r0 = ei_random<int>(4,cols-8),
|
||||
r1 = ei_random<int>(8,rows-r0);
|
||||
|
||||
VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()), 1);
|
||||
VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()).lazy(), 0);
|
||||
// NOTE in this case the slow product is used:
|
||||
VERIFY_EVALUATION_COUNT( m3 = s1 * (m1 * m2.transpose()).lazy(), 0);
|
||||
VERIFY_EVALUATION_COUNT( m3 = (s1 * m1 * s2 * m2.adjoint()).lazy(), 0);
|
||||
VERIFY_EVALUATION_COUNT( m3 = (s1 * m1 * s2 * (m1*s3+m2*s2).adjoint()).lazy(), 1);
|
||||
VERIFY_EVALUATION_COUNT( m3 = ((s1 * m1).adjoint() * s2 * m2).lazy(), 0);
|
||||
VERIFY_EVALUATION_COUNT( m3 -= (s1 * (-m1*s3).adjoint() * (s2 * m2 * s3)).lazy(), 0);
|
||||
VERIFY_EVALUATION_COUNT( m3 -= (s1 * (m1.transpose() * m2)).lazy(), 1);
|
||||
|
||||
VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1) += (-m1.block(r0,c0,r1,c1) * (s2*m2.block(r0,c0,r1,c1)).adjoint()).lazy() ), 0);
|
||||
VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1) -= (s1 * m1.block(r0,c0,r1,c1) * m2.block(c0,r0,c1,r1)).lazy() ), 0);
|
||||
// NOTE this is because the Block expression is not handled yet by our expression analyser
|
||||
VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1) = (s1 * m1.block(r0,c0,r1,c1) * (s1*m2).block(c0,r0,c1,r1)).lazy() ), 1);
|
||||
|
||||
VERIFY_EVALUATION_COUNT( m3 -= (s1 * m1).template triangularView<LowerTriangular>() * m2, 0);
|
||||
VERIFY_EVALUATION_COUNT( rm3 = (s1 * m1.adjoint()).template triangularView<UpperTriangular>() * (m2+m2), 1);
|
||||
VERIFY_EVALUATION_COUNT( rm3 = (s1 * m1.adjoint()).template triangularView<UnitUpperTriangular>() * m2.adjoint(), 0);
|
||||
|
||||
VERIFY_EVALUATION_COUNT( rm3.col(c0) = (s1 * m1.adjoint()).template triangularView<UnitUpperTriangular>() * (s2*m2.row(c0)).adjoint(), 0);
|
||||
|
||||
VERIFY_EVALUATION_COUNT( m1.template triangularView<LowerTriangular>().solveInPlace(m3), 0);
|
||||
// FIXME this is because the rhs/result must be column major:
|
||||
VERIFY_EVALUATION_COUNT( m1.adjoint().template triangularView<LowerTriangular>().solveInPlace(m3.transpose()), 1);
|
||||
|
||||
VERIFY_EVALUATION_COUNT( m3 -= (s1 * m1).adjoint().template selfadjointView<LowerTriangular>() * (-m2*s3).adjoint(), 0);
|
||||
VERIFY_EVALUATION_COUNT( m3 = s2 * m2.adjoint() * (s1 * m1.adjoint()).template selfadjointView<UpperTriangular>(), 0);
|
||||
VERIFY_EVALUATION_COUNT( rm3 = (s1 * m1.adjoint()).template selfadjointView<LowerTriangular>() * m2.adjoint(), 0);
|
||||
|
||||
VERIFY_EVALUATION_COUNT( m3.col(c0) = (s1 * m1).adjoint().template selfadjointView<LowerTriangular>() * (-m2.row(c0)*s3).adjoint(), 0);
|
||||
VERIFY_EVALUATION_COUNT( m3.col(c0) -= (s1 * m1).adjoint().template selfadjointView<UpperTriangular>() * (-m2.row(c0)*s3).adjoint(), 0);
|
||||
|
||||
VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1) += m1.block(r0,r0,r1,r1).template selfadjointView<UpperTriangular>() * (s1*m2.block(c0,r0,c1,r1)) ), 0);
|
||||
VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1) = m1.block(r0,r0,r1,r1).template selfadjointView<UpperTriangular>() * m2.block(c0,r0,c1,r1) ), 0);
|
||||
VERIFY_EVALUATION_COUNT(( m3 = m1.block(r0,r0,r1,r1).template selfadjointView<LowerTriangular>() * m2.block(c0,r0,c1,r1) ), 0);
|
||||
|
||||
VERIFY_EVALUATION_COUNT( m3.template selfadjointView<LowerTriangular>().rankUpdate(m2.adjoint()), 0);
|
||||
}
|
||||
|
||||
void test_product_notemporary()
|
||||
{
|
||||
int s;
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
s = ei_random<int>(16,320);
|
||||
CALL_SUBTEST( product_notemporary(MatrixXf(s, s)) );
|
||||
s = ei_random<int>(16,120);
|
||||
CALL_SUBTEST( product_notemporary(MatrixXcd(s,s)) );
|
||||
}
|
||||
}
|
@ -38,7 +38,7 @@ template<int OtherSize> struct symm_extra {
|
||||
|
||||
template<> struct symm_extra<1> {
|
||||
template<typename M1, typename M2, typename Scalar>
|
||||
static void run(M1& m1, M1& m2, M2& rhs2, M2& rhs22, M2& rhs23, Scalar s1, Scalar s2) {}
|
||||
static void run(M1&, M1&, M2&, M2&, M2&, Scalar, Scalar) {}
|
||||
};
|
||||
|
||||
template<typename Scalar, int Size, int OtherSize> void symm(int size = Size, int othersize = OtherSize)
|
||||
|
@ -53,7 +53,7 @@ template<typename Scalar> void trmm(int size,int othersize)
|
||||
VERIFY_IS_APPROX(rge3 = tri.template triangularView<LowerTriangular>() * ge2.adjoint(), loTri * ge2.adjoint());
|
||||
VERIFY_IS_APPROX( ge3 = tri.template triangularView<UpperTriangular>() * ge2.adjoint(), upTri * ge2.adjoint());
|
||||
VERIFY_IS_APPROX(rge3 = tri.template triangularView<UpperTriangular>() * ge2.adjoint(), upTri * ge2.adjoint());
|
||||
VERIFY_IS_APPROX( ge3 = tri.adjoint().template triangularView<UpperTriangular>() * ge2.adjoint(), loTri.adjoint() * ge2.adjoint());
|
||||
VERIFY_IS_APPROX( ge3 = (s1*tri).adjoint().template triangularView<UpperTriangular>() * ge2.adjoint(), ei_conj(s1) * loTri.adjoint() * ge2.adjoint());
|
||||
VERIFY_IS_APPROX(rge3 = tri.adjoint().template triangularView<UpperTriangular>() * ge2.adjoint(), loTri.adjoint() * ge2.adjoint());
|
||||
VERIFY_IS_APPROX( ge3 = tri.adjoint().template triangularView<LowerTriangular>() * ge2.adjoint(), upTri.adjoint() * ge2.adjoint());
|
||||
VERIFY_IS_APPROX(rge3 = tri.adjoint().template triangularView<LowerTriangular>() * ge2.adjoint(), upTri.adjoint() * ge2.adjoint());
|
||||
|
@ -51,8 +51,6 @@ template<typename MatrixType> void triangular(const MatrixType& m)
|
||||
v2 = VectorType::Random(rows),
|
||||
vzero = VectorType::Zero(rows);
|
||||
|
||||
Scalar s1 = ei_random<Scalar>();
|
||||
|
||||
MatrixType m1up = m1.template triangularView<Eigen::UpperTriangular>();
|
||||
MatrixType m2up = m2.template triangularView<Eigen::UpperTriangular>();
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user