mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
In SparseQR, calling factorize() without analyzePattern() was broken.
This commit is contained in:
parent
be3477e206
commit
25a3e65a68
@ -75,7 +75,7 @@ class SparseQR
|
||||
typedef Matrix<Scalar, Dynamic, 1> ScalarVector;
|
||||
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
||||
public:
|
||||
SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
|
||||
SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
|
||||
{ }
|
||||
|
||||
/** Construct a QR factorization of the matrix \a mat.
|
||||
@ -84,7 +84,7 @@ class SparseQR
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
|
||||
SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
|
||||
{
|
||||
compute(mat);
|
||||
}
|
||||
@ -262,6 +262,7 @@ class SparseQR
|
||||
IndexVector m_etree; // Column elimination tree
|
||||
IndexVector m_firstRowElt; // First element in each row
|
||||
bool m_isQSorted; // whether Q is sorted or not
|
||||
bool m_isEtreeOk; // whether the elimination tree match the initial input matrix
|
||||
|
||||
template <typename, typename > friend struct SparseQR_QProduct;
|
||||
template <typename > friend struct SparseQRMatrixQReturnType;
|
||||
@ -297,6 +298,7 @@ void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
||||
// Compute the column elimination tree of the permuted matrix
|
||||
m_outputPerm_c = m_perm_c.inverse();
|
||||
internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
|
||||
m_isEtreeOk = true;
|
||||
|
||||
m_R.resize(m, n);
|
||||
m_Q.resize(m, diagSize);
|
||||
@ -330,6 +332,15 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
||||
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
|
||||
ScalarVector tval(m); // The dense vector used to compute the current column
|
||||
RealScalar pivotThreshold = m_threshold;
|
||||
|
||||
m_R.setZero();
|
||||
m_Q.setZero();
|
||||
if(!m_isEtreeOk)
|
||||
{
|
||||
m_outputPerm_c = m_perm_c.inverse();
|
||||
internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
|
||||
m_isEtreeOk = true;
|
||||
}
|
||||
|
||||
m_pmat = mat;
|
||||
m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
|
||||
@ -513,6 +524,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
||||
|
||||
// Recompute the column elimination tree
|
||||
internal::coletree(m_pmat, m_etree, m_firstRowElt, m_pivotperm.indices().data());
|
||||
m_isEtreeOk = false;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -54,6 +54,8 @@ template<typename Scalar> void test_sparseqr_scalar()
|
||||
|
||||
b = dA * DenseVector::Random(A.cols());
|
||||
solver.compute(A);
|
||||
if(internal::random<float>(0,1)>0.5)
|
||||
solver.factorize(A); // this checks that calling analyzePattern is not needed if the pattern do not change.
|
||||
if (solver.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse QR factorization failed\n";
|
||||
|
Loading…
Reference in New Issue
Block a user