mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-30 17:40:05 +08:00
RealShur for a already Hessenberg matrix
This commit is contained in:
parent
a67eea05c1
commit
23e2de3cb6
@ -167,6 +167,25 @@ template<typename _MatrixType> class RealSchur
|
|||||||
*/
|
*/
|
||||||
RealSchur& compute(const MatrixType& matrix, bool computeU = true);
|
RealSchur& compute(const MatrixType& matrix, bool computeU = true);
|
||||||
|
|
||||||
|
/** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
|
||||||
|
* \param[in] matrixH Matrix in Hessenberg form H
|
||||||
|
* \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
|
||||||
|
* \param computeU Computes the matriX U of the Schur vectors
|
||||||
|
* \return Reference to \c *this
|
||||||
|
*
|
||||||
|
* This routine assumes that the matrix is already reduced in Hessenberg form matrixH
|
||||||
|
* using either the class HessenbergDecomposition or another mean.
|
||||||
|
* It computes the upper quasi-triangular matrix T of the Schur decomposition of H
|
||||||
|
* When computeU is true, this routine computes the matrix U such that
|
||||||
|
* A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
|
||||||
|
*
|
||||||
|
* NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
|
||||||
|
* is not available, the user should give an identity matrix (Q.setIdentity())
|
||||||
|
*
|
||||||
|
* \sa compute(const MatrixType&, bool)
|
||||||
|
*/
|
||||||
|
template<typename HessMatrixType, typename OrthMatrixType>
|
||||||
|
RealSchur& computeHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
|
||||||
/** \brief Reports whether previous computation was successful.
|
/** \brief Reports whether previous computation was successful.
|
||||||
*
|
*
|
||||||
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
||||||
@ -233,11 +252,23 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix,
|
|||||||
|
|
||||||
// Step 1. Reduce to Hessenberg form
|
// Step 1. Reduce to Hessenberg form
|
||||||
m_hess.compute(matrix);
|
m_hess.compute(matrix);
|
||||||
m_matT = m_hess.matrixH();
|
|
||||||
if (computeU)
|
|
||||||
m_matU = m_hess.matrixQ();
|
|
||||||
|
|
||||||
// Step 2. Reduce to real Schur form
|
// Step 2. Reduce to real Schur form
|
||||||
|
computeHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
|
||||||
|
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
template<typename MatrixType>
|
||||||
|
template<typename HessMatrixType, typename OrthMatrixType>
|
||||||
|
RealSchur<MatrixType>& RealSchur<MatrixType>::computeHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
|
||||||
|
{
|
||||||
|
m_matT = matrixH;
|
||||||
|
if(computeU)
|
||||||
|
m_matU = matrixQ;
|
||||||
|
|
||||||
|
Index maxIters = m_maxIters;
|
||||||
|
if (maxIters == -1)
|
||||||
|
maxIters = m_maxIterationsPerRow * matrixH.rows();
|
||||||
m_workspaceVector.resize(m_matT.cols());
|
m_workspaceVector.resize(m_matT.cols());
|
||||||
Scalar* workspace = &m_workspaceVector.coeffRef(0);
|
Scalar* workspace = &m_workspaceVector.coeffRef(0);
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user