update Transform::inverse() to take an optional argument stating whether the transformation is:

NonAffine, Affine (default), contains NoShear, contains NoScaling
that allows significant speed improvements. If you like it, this concept could be applied to
Transform::extractRotation (or to a more advanced decomposition function) and to Hyperplane::transformed()
and maybe to some other places... e.g., I think a Transform::normalMatrix() function would not harm and
warn user that the transformation of normals is not that trivial (I saw this mistake much too often)
This commit is contained in:
Gael Guennebaud 2008-08-30 12:42:06 +00:00
parent 9e7a9cde14
commit 236b7a545d
6 changed files with 188 additions and 37 deletions

View File

@ -25,6 +25,7 @@ namespace Eigen {
// the Geometry module use cwiseCos and cwiseSin which are defined in the Array module
#include "src/Array/CwiseOperators.h"
#include "src/Array/Functors.h"
#include "src/Array/PartialRedux.h"
#include "src/Geometry/OrthoMethods.h"
#include "src/Geometry/Quaternion.h"

View File

@ -35,18 +35,23 @@
* \param _Dim the dimension of the space, can be a compile time value or Dynamic
*
*
* \sa class Translate, class Transform
* \sa class Translation, class Transform
*/
template<typename _Scalar, int _Dim>
class Scaling
{
public:
/** dimension of the space */
enum { Dim = _Dim };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
/** corresponding vector type */
typedef Matrix<Scalar,Dim,1> VectorType;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
/** corresponding translation type */
typedef Translation<Scalar,Dim> TranslationType;
/** corresponding affine transformation type */
typedef Transform<Scalar,Dim> TransformType;
protected:

View File

@ -25,6 +25,14 @@
#ifndef EIGEN_TRANSFORM_H
#define EIGEN_TRANSFORM_H
/** Represents some traits of a transformation */
enum TransformationKnowledge {
NoScaling, ///< the transformation is a concatenation of translations, rotations
NoShear, ///< the transformation is a concatenation of translations, rotations and scalings
GenericAffine, ///< the transformation is affine (linear transformation + translation)
NonAffine ///< the transformation might not be affine
};
// Note that we have to pass Dim and HDim because it is not allowed to use a template
// parameter to define a template specialization. To be more precise, in the following
// specializations, it is not allowed to use Dim+1 instead of HDim.
@ -73,7 +81,9 @@ public:
typedef Matrix<Scalar,Dim,1> VectorType;
/** type of a read/write reference to the translation part of the rotation */
typedef Block<MatrixType,Dim,1> TranslationPart;
/** corresponding translation type */
typedef Translation<Scalar,Dim> TranslationType;
/** corresponding scaling transformation type */
typedef Scaling<Scalar,Dim> ScalingType;
protected:
@ -193,8 +203,11 @@ public:
Transform& shear(Scalar sx, Scalar sy);
Transform& preshear(Scalar sx, Scalar sy);
inline Transform& operator=(const TranslationType& t);
inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
inline Transform operator*(const TranslationType& t) const;
inline Transform& operator=(const ScalingType& t);
inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); }
inline Transform operator*(const ScalingType& s) const;
friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t)
@ -212,9 +225,7 @@ public:
Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
/** \sa MatrixBase::inverse() */
const MatrixType inverse() const
{ return m_matrix.inverse(); }
inline const MatrixType inverse(TransformationKnowledge knowledge = GenericAffine) const;
const Scalar* data() const { return m_matrix.data(); }
Scalar* data() { return m_matrix.data(); }
@ -232,6 +243,10 @@ typedef Transform<double,2> Transform2d;
/** \ingroup GeometryModule */
typedef Transform<double,3> Transform3d;
/**************************
*** Optional QT support ***
**************************/
#ifdef EIGEN_QT_SUPPORT
/** Initialises \c *this from a QMatrix assuming the dimension is 2.
*
@ -271,6 +286,10 @@ QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
}
#endif
/*********************
*** Procedural API ***
*********************/
/** Applies on the right the non uniform scale transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \sa prescale()
@ -399,6 +418,18 @@ Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
return *this;
}
/******************************************************
*** Scaling, Translation and Rotation compatibility ***
******************************************************/
template<typename Scalar, int Dim>
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t)
{
setIdentity();
translation() = t.vector();
return *this;
}
template<typename Scalar, int Dim>
inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const
{
@ -407,6 +438,15 @@ inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationT
return res;
}
template<typename Scalar, int Dim>
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s)
{
m_matrix.setZero();
linear().diagonal() = s.coeffs();
m_matrix(Dim,Dim) = Scalar(1);
return *this;
}
template<typename Scalar, int Dim>
inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const
{
@ -415,6 +455,10 @@ inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType&
return res;
}
/***************************
*** Specialial functions ***
***************************/
/** \returns the rotation part of the transformation using a QR decomposition.
* \sa extractRotationNoShear(), class QR
*/
@ -454,6 +498,65 @@ Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDer
return *this;
}
/** \returns the inverse transformation matrix according to some given knowledge
* on \c *this.
*
* \param knowledge allozs to optimize the inversion process when the transformion
* is known to be not a general transformation. The possible values are:
* - NonAffine if the transformation is not necessarily affines, i.e., if the
* last row is not guaranteed to be [0 ... 0 1]
* - GenericAffine is the default, the last row is assumed to be [0 ... 0 1]
* - NoShear if the transformation is only a concatenations of translations,
* rotations, and scalings.
* - NoScaling if the transformation is only a concatenations of translations
* and rotations.
*
* \sa MatrixBase::inverse()
*/
template<typename Scalar, int Dim>
inline const typename Transform<Scalar,Dim>::MatrixType
Transform<Scalar,Dim>::inverse(TransformationKnowledge knowledge) const
{
if (knowledge == NonAffine)
{
return m_matrix.inverse();
}
else
{
MatrixType res;
if (knowledge == GenericAffine)
{
res.template corner<Dim,Dim>(TopLeft) = linear().inverse();
}
else if (knowledge == NoShear)
{
// extract linear = rotation * scaling
// then inv(linear) = inv(scaling) * inv(rotation)
// = inv(scaling) * trans(rotation)
// = inv(scaling) * trans(inv(scaling)) * trans(A)
// = inv(scaling) * inv(scaling) * trans(A)
// = inv(scaling)^2 * trans(A)
// = scaling^-2 * trans(A)
// with scaling[i] = A.col(i).norm()
VectorType invScaling2 = linear().colwise().norm2().cwise().inverse();
res.template corner<Dim,Dim>(TopLeft) = (invScaling2.asDiagonal() * linear().transpose()).lazy();
}
else if (knowledge == NoScaling)
{
res.template corner<Dim,Dim>(TopLeft) = linear().transpose();
}
else
{
ei_assert("invalid knowledge value in Transform::inverse()");
}
// translation and remaining parts
res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation();
res.template corner<1,Dim>(BottomLeft).setZero();
res.coeffRef(Dim,Dim) = Scalar(1);
return res;
}
}
/***********************************
*** Specializations of operator* ***
***********************************/

View File

@ -41,12 +41,17 @@ template<typename _Scalar, int _Dim>
class Translation
{
public:
/** dimension of the space */
enum { Dim = _Dim };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
/** corresponding vector type */
typedef Matrix<Scalar,Dim,1> VectorType;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
/** corresponding scaling transformation type */
typedef Scaling<Scalar,Dim> ScalingType;
/** corresponding affine transformation type */
typedef Transform<Scalar,Dim> TransformType;
protected:

View File

@ -569,8 +569,8 @@ m = AngleAxisf(angle1, Vector3f::UnitZ())
<a href="#" class="top">top</a>\section TutorialGeoTransformation Affine transformations
In Eigen we have chosen to not distinghish between points and vectors such that all points are
actually represented by displacement vector from the origine (pt \~ pt-0). With that in mind,
real points and vector distinguish when the rotation is applied.
actually represented by displacement vectors from the origine ( \f$ \mathbf{p} \equiv \mathbf{p}-0 \f$ ).
With that in mind, real points and vector distinguish when the rotation is applied.
<table class="tutorial_code">
<tr><td></td><td>\b 3D </td><td>\b 2D </td></tr>
<tr><td>Creation \n <span class="note">rot2D can also be an angle in radian</span></td><td>\code
@ -606,6 +606,17 @@ aux.linear().corner<2,2>(TopLeft) = t.linear();
aux.translation().start<2>() = t.translation();
glLoadMatrixf(aux.data());\endcode</td></tr>
<tr><td colspan="3">\b Component \b accessors</td></tr>
<tr><td>full read-write access to the internal matrix</td><td>\code
t.matrix() = mat4x4;
mat4x4 = t.matrix();
\endcode</td><td>\code
t.matrix() = mat3x3;
mat3x3 = t.matrix();
\endcode</td></tr>
<tr><td>coefficient accessors</td><td colspan="2">\code
t(i,j) = scalar; <=> t.matrix()(i,j) = scalar;
scalar = t(i,j); <=> scalar = t.matrix()(i,j);
\endcode</td></tr>
<tr><td>translation part</td><td>\code
t.translation() = vec3;
vec3 = t.translation();
@ -620,36 +631,50 @@ mat3x3 = t.linear();
t.linear() = mat2x2;
mat2x2 = t.linear();
\endcode</td></tr>
<tr><td colspan="3">\b Editing \b shortcuts</td></tr>
<tr><td>Applies a translation</td><td>\code
t.translate(Vector3f(tx, ty, tz));
t.pretranslate(Vector3f(tx, ty, tz));
\endcode</td><td>\code
t.translate(Vector2f(tx, ty));
t.pretranslate(Vector2f(tx, ty));
\endcode</td></tr>
<tr><td>Applies a rotation \n <span class="note">rot2D can also be an angle in radian</span></td><td>\code
t.rotate(rot3D);
t.prerotate(rot3D);
\endcode</td><td>\code
t.rotate(rot2D);
t.prerotate(rot2D);
\endcode</td></tr>
<tr><td>Applies a scaling</td><td>\code
t.scale(Vector3f(sx, sy, sz));
t.scale(Vector3f::Constant(s));
t.prescale(Vector3f(sx, sy, sz));
\endcode</td><td>\code
t.scale(Vector2f(sx, sy));
t.scale(Vector2f::Constant(s));
t.prescale(Vector2f(sx, sy));
\endcode</td></tr>
<tr><td>Applies a shear transformation \n(2D only)</td><td></td><td>\code
t.shear(sx,sy);
t.preshear(sx,sy);
\endcode</td></tr>
</table>
\b Transformation \b creation \n
Eigen's geometry module offer two different ways to build and update transformation objects.
<table class="tutorial_code">
<tr><td></td><td>\b procedurale \b API </td><td>\b natural \b API </td></tr>
<tr><td>Applies a translation</td><td>\code
t.translate(Vector3(tx, ty, ...));
t.pretranslate(Vector3(tx, ty, ...));
\endcode</td><td>\code
t *= Translation(tx, ty, ...);
t = Translation(tx, ty, ...) * t;
\endcode</td></tr>
<tr><td>Applies a rotation \n <span class="note">In 2D, any_rotation can also be \n an angle in radian</span></td><td>\code
t.rotate(any_rotation);
t.prerotate(any_rotation);
\endcode</td><td>\code
t *= any_rotation;
t = any_rotation * t;
\endcode</td></tr>
<tr><td>Applies a scaling</td><td>\code
t.scale(Vector(sx, sy, ...));
t.scale(Vector::Constant(s));
t.prescale(Vector3f(sx, sy, ...));
\endcode</td><td>\code
t *= Scaling(sx, sy, ...);
t *= Scaling(s);
t = Scaling(sx, sy, ...) * t;
\endcode</td></tr>
<tr><td>Applies a shear transformation \n ( \b 2D \b only ! )</td><td>\code
t.shear(sx,sy);
t.preshear(sx,sy);
\endcode</td><td></td></tr>
</table>
Note that in both API, any many transformations can be concatenated in a single lines as shown in the two following equivalent examples:
<table class="tutorial_code">
<tr><td>\code
t.pretranslate(..).rotate(..).translate(..).scale(..);
\endcode</td></tr>
<tr><td>\code
t = Translation(..) * t * RotationType(..) * Translation(..) * Scaling(..);
\endcode</td></tr>
</table>
*/

View File

@ -219,12 +219,24 @@ template<typename Scalar> void geometry(void)
t0.setIdentity();
t0.scale(v0);
VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1);
// test transform inversion
t0.setIdentity();
t0.translate(v0);
t0.linear().setRandom();
VERIFY_IS_APPROX(t0.inverse(GenericAffine), t0.matrix().inverse());
t0.setIdentity();
t0.translate(v0).rotate(q1).scale(v1);
VERIFY_IS_APPROX(t0.inverse(NoShear), t0.matrix().inverse());
t0.setIdentity();
t0.translate(v0).rotate(q1);
VERIFY_IS_APPROX(t0.inverse(NoScaling), t0.matrix().inverse());
}
void test_geometry()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( geometry<float>() );
// CALL_SUBTEST( geometry<double>() );
CALL_SUBTEST( geometry<double>() );
}
}