mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
Improved the coverage of the fp16 reduction tests
This commit is contained in:
parent
8288b0aec2
commit
22d02c9855
@ -248,76 +248,60 @@ void test_cuda_contractions() {
|
||||
}
|
||||
|
||||
|
||||
void test_cuda_reductions() {
|
||||
void test_cuda_reductions(int size1, int size2, int redux) {
|
||||
Eigen::CudaStreamDevice stream;
|
||||
Eigen::GpuDevice gpu_device(&stream);
|
||||
int size = 13;
|
||||
int num_elem = size*size;
|
||||
int num_elem = size1*size2;
|
||||
int result_size = (redux == 1 ? size1 : size2);
|
||||
|
||||
float* d_float1 = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
float* d_float2 = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
Eigen::half* d_res_half = (Eigen::half*)gpu_device.allocate(size * sizeof(Eigen::half));
|
||||
Eigen::half* d_res_float = (Eigen::half*)gpu_device.allocate(size * sizeof(Eigen::half));
|
||||
Eigen::half* d_res_half = (Eigen::half*)gpu_device.allocate(result_size * sizeof(Eigen::half));
|
||||
Eigen::half* d_res_float = (Eigen::half*)gpu_device.allocate(result_size * sizeof(Eigen::half));
|
||||
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 2>, Eigen::Aligned> gpu_float1(
|
||||
d_float1, size, size);
|
||||
d_float1, size1, size2);
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 2>, Eigen::Aligned> gpu_float2(
|
||||
d_float2, size, size);
|
||||
d_float2, size1, size2);
|
||||
Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_res_half(
|
||||
d_res_half, size);
|
||||
d_res_half, result_size);
|
||||
Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_res_float(
|
||||
d_res_float, size);
|
||||
d_res_float, result_size);
|
||||
|
||||
gpu_float1.device(gpu_device) = gpu_float1.random();
|
||||
gpu_float2.device(gpu_device) = gpu_float2.random();
|
||||
|
||||
Eigen::array<int, 1> redux_dim = {{0}};
|
||||
Eigen::array<int, 1> redux_dim = {{redux}};
|
||||
gpu_res_float.device(gpu_device) = gpu_float1.sum(redux_dim).cast<Eigen::half>();
|
||||
gpu_res_half.device(gpu_device) = gpu_float1.cast<Eigen::half>().sum(redux_dim);
|
||||
|
||||
Tensor<Eigen::half, 1> half_prec(size);
|
||||
Tensor<Eigen::half, 1> full_prec(size);
|
||||
gpu_device.memcpyDeviceToHost(half_prec.data(), d_res_half, size*sizeof(Eigen::half));
|
||||
gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, size*sizeof(Eigen::half));
|
||||
Tensor<Eigen::half, 1> half_prec(result_size);
|
||||
Tensor<Eigen::half, 1> full_prec(result_size);
|
||||
gpu_device.memcpyDeviceToHost(half_prec.data(), d_res_half, result_size*sizeof(Eigen::half));
|
||||
gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, result_size*sizeof(Eigen::half));
|
||||
gpu_device.synchronize();
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
for (int i = 0; i < result_size; ++i) {
|
||||
std::cout << "Checking redux " << i << std::endl;
|
||||
VERIFY_IS_APPROX(full_prec(i), half_prec(i));
|
||||
}
|
||||
|
||||
redux_dim = {{1}};
|
||||
gpu_res_float.device(gpu_device) = gpu_float1.sum(redux_dim).cast<Eigen::half>();
|
||||
gpu_res_half.device(gpu_device) = gpu_float1.cast<Eigen::half>().sum(redux_dim);
|
||||
|
||||
gpu_device.memcpyDeviceToHost(half_prec.data(), d_res_half, size*sizeof(Eigen::half));
|
||||
gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, size*sizeof(Eigen::half));
|
||||
gpu_device.synchronize();
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
std::cout << "Checking redux " << i << std::endl;
|
||||
VERIFY_IS_APPROX(full_prec(i), half_prec(i));
|
||||
}
|
||||
|
||||
gpu_res_float.device(gpu_device) = gpu_float1.maximum(redux_dim).cast<Eigen::half>();
|
||||
gpu_res_half.device(gpu_device) = gpu_float1.cast<Eigen::half>().maximum(redux_dim);
|
||||
|
||||
gpu_device.memcpyDeviceToHost(half_prec.data(), d_res_half, size*sizeof(Eigen::half));
|
||||
gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, size*sizeof(Eigen::half));
|
||||
gpu_device.synchronize();
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
std::cout << "Checking redux " << i << std::endl;
|
||||
VERIFY_IS_APPROX(full_prec(i), half_prec(i));
|
||||
}
|
||||
|
||||
gpu_device.deallocate(d_float1);
|
||||
gpu_device.deallocate(d_float2);
|
||||
gpu_device.deallocate(d_res_half);
|
||||
gpu_device.deallocate(d_res_float);
|
||||
}
|
||||
|
||||
void test_cuda_reductions() {
|
||||
test_cuda_reductions(13, 13, 0);
|
||||
test_cuda_reductions(13, 13, 1);
|
||||
|
||||
test_cuda_reductions(35, 36, 0);
|
||||
test_cuda_reductions(35, 36, 1);
|
||||
|
||||
test_cuda_reductions(36, 35, 0);
|
||||
test_cuda_reductions(36, 35, 1);
|
||||
}
|
||||
|
||||
void test_cuda_full_reductions() {
|
||||
Eigen::CudaStreamDevice stream;
|
||||
@ -427,8 +411,8 @@ void test_cxx11_tensor_of_float16_cuda()
|
||||
CALL_SUBTEST_1(test_cuda_trancendental());
|
||||
CALL_SUBTEST_2(test_cuda_contractions());
|
||||
CALL_SUBTEST_3(test_cuda_reductions());
|
||||
CALL_SUBTEST_3(test_cuda_full_reductions());
|
||||
CALL_SUBTEST_4(test_cuda_forced_evals());
|
||||
CALL_SUBTEST_4(test_cuda_full_reductions());
|
||||
CALL_SUBTEST_5(test_cuda_forced_evals());
|
||||
#else
|
||||
std::cout << "Half floats are not supported by this version of cuda: skipping the test" << std::endl;
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user