mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
Factorize *SVD::solve to SVDBase
This commit is contained in:
parent
b3a0365429
commit
1f398dfc82
@ -592,47 +592,12 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||
return compute(matrix, m_computationOptions);
|
||||
}
|
||||
|
||||
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
|
||||
*
|
||||
* \param b the right-hand-side of the equation to solve.
|
||||
*
|
||||
* \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
|
||||
*
|
||||
* \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
|
||||
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
|
||||
*/
|
||||
#ifdef EIGEN_TEST_EVALUATORS
|
||||
template<typename Rhs>
|
||||
inline const Solve<JacobiSVD, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
||||
return Solve<JacobiSVD, Rhs>(*this, b.derived());
|
||||
}
|
||||
#else
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<JacobiSVD, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
||||
return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
|
||||
}
|
||||
#endif
|
||||
|
||||
using Base::computeU;
|
||||
using Base::computeV;
|
||||
using Base::rows;
|
||||
using Base::cols;
|
||||
using Base::rank;
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename RhsType, typename DstType>
|
||||
EIGEN_DEVICE_FUNC
|
||||
void _solve_impl(const RhsType &rhs, DstType &dst) const;
|
||||
#endif
|
||||
|
||||
private:
|
||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
|
||||
@ -817,42 +782,6 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
||||
return *this;
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename _MatrixType, int QRPreconditioner>
|
||||
template<typename RhsType, typename DstType>
|
||||
void JacobiSVD<_MatrixType,QRPreconditioner>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
||||
{
|
||||
eigen_assert(rhs.rows() == rows());
|
||||
|
||||
// A = U S V^*
|
||||
// So A^{-1} = V S^{-1} U^*
|
||||
|
||||
Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
|
||||
Index l_rank = rank();
|
||||
|
||||
tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs;
|
||||
tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
|
||||
dst = m_matrixV.leftCols(l_rank) * tmp;
|
||||
}
|
||||
#endif
|
||||
|
||||
namespace internal {
|
||||
#ifndef EIGEN_TEST_EVALUATORS
|
||||
template<typename _MatrixType, int QRPreconditioner, typename Rhs>
|
||||
struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
||||
: solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
||||
{
|
||||
typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dec()._solve_impl(rhs(), dst);
|
||||
}
|
||||
};
|
||||
#endif
|
||||
} // end namespace internal
|
||||
|
||||
#ifndef __CUDACC__
|
||||
/** \svd_module
|
||||
*
|
||||
|
@ -190,6 +190,41 @@ public:
|
||||
|
||||
inline Index rows() const { return m_rows; }
|
||||
inline Index cols() const { return m_cols; }
|
||||
|
||||
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
|
||||
*
|
||||
* \param b the right-hand-side of the equation to solve.
|
||||
*
|
||||
* \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
|
||||
*
|
||||
* \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
|
||||
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
|
||||
*/
|
||||
#ifdef EIGEN_TEST_EVALUATORS
|
||||
template<typename Rhs>
|
||||
inline const Solve<Derived, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
eigen_assert(computeU() && computeV() && "SVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
||||
return Solve<Derived, Rhs>(derived(), b.derived());
|
||||
}
|
||||
#else
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<SVDBase, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
eigen_assert(computeU() && computeV() && "SVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
||||
return internal::solve_retval<SVDBase, Rhs>(*this, b.derived());
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename RhsType, typename DstType>
|
||||
EIGEN_DEVICE_FUNC
|
||||
void _solve_impl(const RhsType &rhs, DstType &dst) const;
|
||||
#endif
|
||||
|
||||
protected:
|
||||
// return true if already allocated
|
||||
@ -220,6 +255,41 @@ protected:
|
||||
|
||||
};
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename Derived>
|
||||
template<typename RhsType, typename DstType>
|
||||
void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
||||
{
|
||||
eigen_assert(rhs.rows() == rows());
|
||||
|
||||
// A = U S V^*
|
||||
// So A^{-1} = V S^{-1} U^*
|
||||
|
||||
Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
|
||||
Index l_rank = rank();
|
||||
|
||||
tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs;
|
||||
tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
|
||||
dst = m_matrixV.leftCols(l_rank) * tmp;
|
||||
}
|
||||
#endif
|
||||
|
||||
namespace internal {
|
||||
#ifndef EIGEN_TEST_EVALUATORS
|
||||
template<typename Derived, typename Rhs>
|
||||
struct solve_retval<SVDBase<Derived>, Rhs>
|
||||
: solve_retval_base<SVDBase<Derived>, Rhs>
|
||||
{
|
||||
typedef SVDBase<Derived> SVDType;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(SVDType,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dec().derived()._solve_impl(rhs(), dst);
|
||||
}
|
||||
};
|
||||
#endif
|
||||
} // end namespace internal
|
||||
|
||||
template<typename MatrixType>
|
||||
bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
|
||||
|
@ -100,8 +100,8 @@ ei_add_test(splines)
|
||||
ei_add_test(gmres)
|
||||
ei_add_test(minres)
|
||||
ei_add_test(levenberg_marquardt)
|
||||
if(EIGEN_TEST_NO_EVALUATORS)
|
||||
ei_add_test(bdcsvd)
|
||||
if(EIGEN_TEST_NO_EVALUATORS)
|
||||
ei_add_test(kronecker_product)
|
||||
endif()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user