Improve efficiency of SparseMatrix::insert/coeffRef for sequential outer-index insertion strategies (bug #974)

This commit is contained in:
Gael Guennebaud 2015-03-04 09:39:26 +01:00
parent 3dca4a1efc
commit 1ce0178363

View File

@ -222,24 +222,18 @@ class SparseMatrix
* The non zero coefficient must \b not already exist. * The non zero coefficient must \b not already exist.
* *
* If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed
* mode while reserving room for 2 non zeros per inner vector. It is strongly recommended to first * mode while reserving room for 2 x this->innerSize() non zeros if reserve(Index) has not been called earlier.
* call reserve(const SizesType &) to reserve a more appropriate number of elements per * In this case, the insertion procedure is optimized for a \e sequential insertion mode where elements are assumed to be
* inner vector that better match your scenario. * inserted by increasing outer-indices.
*
* If that's not the case, then it is strongly recommended to either use a triplet-list to assemble the matrix, or to first
* call reserve(const SizesType &) to reserve the appropriate number of non-zero elements per inner vector.
* *
* This function performs a sorted insertion in O(1) if the elements of each inner vector are * Assuming memory has been appropriately reserved, this function performs a sorted insertion in O(1)
* inserted in increasing inner index order, and in O(nnz_j) for a random insertion. * if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
* *
*/ */
Scalar& insert(Index row, Index col) Scalar& insert(Index row, Index col);
{
eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
if(isCompressed())
{
reserve(IndexVector::Constant(outerSize(), 2));
}
return insertUncompressed(row,col);
}
public: public:
@ -1076,6 +1070,114 @@ EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_Index>& SparseMatrix<Scalar,_Opt
} }
} }
template<typename _Scalar, int _Options, typename _Index>
typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insert(Index row, Index col)
{
eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
if(isCompressed())
{
if(nonZeros()==0)
{
// reserve space if not already done
if(m_data.allocatedSize()==0)
m_data.reserve(2*m_innerSize);
// turn the matrix into non-compressed mode
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
if(!m_innerNonZeros) internal::throw_std_bad_alloc();
memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
// pack all inner-vectors to the end of the pre-allocated space
// and allocate the entire free-space to the first inner-vector
StorageIndex end = convert_index(m_data.allocatedSize());
for(Index j=1; j<=m_outerSize; ++j)
m_outerIndex[j] = end;
}
}
// check whether we can do a fast "push back" insertion
Index data_end = m_data.allocatedSize();
// First case: we are filling a new inner vector which is packed at the end.
// We assume that all remaining inner-vectors are also empty and packed to the end.
if(m_outerIndex[outer]==data_end)
{
eigen_internal_assert(m_innerNonZeros[outer]==0);
// pack previous empty inner-vectors to end of the used-space
// and allocate the entire free-space to the current inner-vector.
StorageIndex p = convert_index(m_data.size());
Index j = outer;
while(j>=0 && m_innerNonZeros[j]==0)
m_outerIndex[j--] = p;
// push back the new element
++m_innerNonZeros[outer];
m_data.append(Scalar(0), inner);
// check for reallocation
if(data_end != m_data.allocatedSize())
{
// m_data has been reallocated
// -> move remaining inner-vectors back to the end of the free-space
// so that the entire free-space is allocated to the current inner-vector.
eigen_internal_assert(data_end < m_data.allocatedSize());
StorageIndex new_end = convert_index(m_data.allocatedSize());
for(Index j=outer+1; j<=m_outerSize; ++j)
if(m_outerIndex[j]==data_end)
m_outerIndex[j] = new_end;
}
return m_data.value(p);
}
// Second case: the next inner-vector is packed to the end
// and the current inner-vector end match the used-space.
if(m_outerIndex[outer+1]==data_end && m_outerIndex[outer]+m_innerNonZeros[outer]==m_data.size())
{
eigen_internal_assert(outer+1==m_outerSize || m_innerNonZeros[outer+1]==0);
// add space for the new element
++m_innerNonZeros[outer];
m_data.resize(m_data.size()+1);
// check for reallocation
if(data_end != m_data.allocatedSize())
{
// m_data has been reallocated
// -> move remaining inner-vectors back to the end of the free-space
// so that the entire free-space is allocated to the current inner-vector.
eigen_internal_assert(data_end < m_data.allocatedSize());
StorageIndex new_end = convert_index(m_data.allocatedSize());
for(Index j=outer+1; j<=m_outerSize; ++j)
if(m_outerIndex[j]==data_end)
m_outerIndex[j] = new_end;
}
// and insert it at the right position (sorted insertion)
Index startId = m_outerIndex[outer];
Index p = m_outerIndex[outer]+m_innerNonZeros[outer]-1;
while ( (p > startId) && (m_data.index(p-1) > inner) )
{
m_data.index(p) = m_data.index(p-1);
m_data.value(p) = m_data.value(p-1);
--p;
}
m_data.index(p) = convert_index(inner);
return (m_data.value(p) = 0);
}
// make sure the matrix is compatible to random un-compressed insertion:
m_data.resize(m_data.allocatedSize());
return insertUncompressed(row,col);
}
template<typename _Scalar, int _Options, typename _Index> template<typename _Scalar, int _Options, typename _Index>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insertUncompressed(Index row, Index col) EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insertUncompressed(Index row, Index col)
{ {