merging the CUDA and HIP implementation for the Tensor directory and the unit tests

This commit is contained in:
Deven Desai 2018-06-20 16:44:58 -04:00
parent cfdabbcc8f
commit 1bb6fa99a3
22 changed files with 1208 additions and 804 deletions

View File

@ -20,7 +20,8 @@ macro(ei_add_test_internal testname testname_with_suffix)
if(EIGEN_ADD_TEST_FILENAME_EXTENSION STREQUAL cu)
if(EIGEN_TEST_HIP)
hip_add_executable(${targetname} ${filename} HIPCC_OPTIONS "-DEIGEN_USE_HIP")
hip_reset_flags()
hip_add_executable(${targetname} ${filename} HIPCC_OPTIONS "-DEIGEN_USE_HIP ${ARGV2}")
elseif(EIGEN_TEST_CUDA_CLANG)
set_source_files_properties(${filename} PROPERTIES LANGUAGE CXX)
if(CUDA_64_BIT_DEVICE_CODE)

View File

@ -99,11 +99,7 @@ typedef unsigned __int64 uint64_t;
#include "src/Tensor/TensorCostModel.h"
#include "src/Tensor/TensorDeviceDefault.h"
#include "src/Tensor/TensorDeviceThreadPool.h"
#if defined(EIGEN_USE_HIP)
#include "src/Tensor/TensorDeviceHip.h"
#else
#include "src/Tensor/TensorDeviceCuda.h"
#endif
#include "src/Tensor/TensorDeviceGpu.h"
#include "src/Tensor/TensorDeviceSycl.h"
#include "src/Tensor/TensorIndexList.h"
#include "src/Tensor/TensorDimensionList.h"
@ -120,28 +116,16 @@ typedef unsigned __int64 uint64_t;
#include "src/Tensor/TensorEvaluator.h"
#include "src/Tensor/TensorExpr.h"
#include "src/Tensor/TensorReduction.h"
#if defined(EIGEN_USE_HIP)
#include "src/Tensor/TensorReductionHip.h"
#else
#include "src/Tensor/TensorReductionCuda.h"
#endif
#include "src/Tensor/TensorReductionGpu.h"
#include "src/Tensor/TensorArgMax.h"
#include "src/Tensor/TensorConcatenation.h"
#include "src/Tensor/TensorContractionMapper.h"
#include "src/Tensor/TensorContractionBlocking.h"
#include "src/Tensor/TensorContraction.h"
#include "src/Tensor/TensorContractionThreadPool.h"
#if defined(EIGEN_USE_HIP)
#include "src/Tensor/TensorContractionHip.h"
#else
#include "src/Tensor/TensorContractionCuda.h"
#endif
#include "src/Tensor/TensorContractionGpu.h"
#include "src/Tensor/TensorConversion.h"
#if defined(EIGEN_USE_HIP)
#include "src/Tensor/TensorConvolutionHip.h"
#else
#include "src/Tensor/TensorConvolution.h"
#endif
#include "src/Tensor/TensorConvolution.h"
#include "src/Tensor/TensorFFT.h"
#include "src/Tensor/TensorPatch.h"
#include "src/Tensor/TensorImagePatch.h"

View File

@ -9,10 +9,10 @@
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_CUDA_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_CUDA_H
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_GPU_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_GPU_H
#if defined(EIGEN_USE_GPU) && defined(EIGEN_CUDACC)
#if defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC)
namespace Eigen {
@ -388,7 +388,7 @@ EigenContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs,
// the sum across all big k blocks of the product of little k block of index (x, y)
// with block of index (y, z). To compute the final output, we need to reduce
// the 8 threads over y by summation.
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
#if defined(EIGEN_HIPCC) || (defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000)
#define shuffleInc(i, j, mask) res(i, j) += __shfl_xor(res(i, j), mask)
#else
#define shuffleInc(i, j, mask) res(i, j) += __shfl_xor_sync(0xFFFFFFFF, res(i, j), mask)
@ -503,7 +503,11 @@ EigenContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs,
template<typename Scalar, typename Index, typename LhsMapper,
typename RhsMapper, typename OutputMapper>
__global__ void
#if defined(EIGEN_HIPCC)
__launch_bounds__(512, 1)
#else
__launch_bounds__(512)
#endif
EigenContractionKernel(const LhsMapper lhs, const RhsMapper rhs,
const OutputMapper output,
const Index m_size, const Index n_size, const Index k_size) {
@ -542,7 +546,45 @@ EigenFloatContractionKernelInternal16x16(const LhsMapper lhs, const RhsMapper rh
results[i].x = results[i].y = results[i].z = results[i].w = 0;
}
#if defined(EIGEN_HIPCC)
#define prefetch_lhs(reg, row, col) \
if (!CHECK_LHS_BOUNDARY) { \
if (col < k_size) { \
reg.x =lhs(row + 0, col); \
reg.y =lhs(row + 1, col); \
reg.z =lhs(row + 2, col); \
reg.w =lhs(row + 3, col); \
} \
} else { \
if (col < k_size) { \
if (row + 3 < m_size) { \
reg.x =lhs(row + 0, col); \
reg.y =lhs(row + 1, col); \
reg.z =lhs(row + 2, col); \
reg.w =lhs(row + 3, col); \
} else if (row + 2 < m_size) { \
reg.x =lhs(row + 0, col); \
reg.y =lhs(row + 1, col); \
reg.z =lhs(row + 2, col); \
} else if (row + 1 < m_size) { \
reg.x =lhs(row + 0, col); \
reg.y =lhs(row + 1, col); \
} else if (row < m_size) { \
reg.x =lhs(row + 0, col); \
} \
} \
} \
#define prefetch_rhs_hipcc(reg, row, col) \
reg.x =rhs(row + 0, col); \
reg.y =rhs(row + 1, col); \
reg.z =rhs(row + 2, col); \
reg.w =rhs(row + 3, col); \
#else
#define prefetch_lhs(reg, row, col) \
if (!CHECK_LHS_BOUNDARY) { \
if (col < k_size) { \
@ -563,14 +605,21 @@ EigenFloatContractionKernelInternal16x16(const LhsMapper lhs, const RhsMapper rh
reg.x =lhs(row + 0, col); \
} \
} \
} \
} \
#endif
Index lhs_vert = base_m+threadIdx.x*4;
for (Index k = 0; k < k_size; k += 16) {
#if defined(EIGEN_HIPCC)
lhs_pf0 = make_float4(0, 0, 0, 0);
rhs_pf0 = make_float4(0, 0, 0, 0);
#else
lhs_pf0 = internal::pset1<float4>(0);
rhs_pf0 = internal::pset1<float4>(0);
#endif
Index lhs_horiz = threadIdx.y+k;
prefetch_lhs(lhs_pf0, lhs_vert, lhs_horiz)
@ -581,7 +630,11 @@ EigenFloatContractionKernelInternal16x16(const LhsMapper lhs, const RhsMapper rh
if (!CHECK_RHS_BOUNDARY) {
if ((rhs_vert + 3) < k_size) {
// just CHECK_RHS_BOUNDARY
#if defined(EIGEN_HIPCC)
prefetch_rhs_hipcc(rhs_pf0, rhs_vert, rhs_horiz0)
#else
rhs_pf0 = rhs.template loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
#endif
} else if (rhs_vert + 2 < k_size) {
// just CHECK_RHS_BOUNDARY
rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
@ -596,7 +649,11 @@ EigenFloatContractionKernelInternal16x16(const LhsMapper lhs, const RhsMapper rh
} else {
if (rhs_horiz0 < n_size) {
if ((rhs_vert + 3) < k_size) {
#if defined(EIGEN_HIPCC)
prefetch_rhs_hipcc(rhs_pf0, rhs_vert, rhs_horiz0)
#else
rhs_pf0 = rhs.template loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
#endif
} else if ((rhs_vert + 2) < k_size) {
rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
@ -618,7 +675,7 @@ EigenFloatContractionKernelInternal16x16(const LhsMapper lhs, const RhsMapper rh
x1 = rhs_pf0.x;
x2 = rhs_pf0.z;
}
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
#if defined(EIGEN_HIPCC) || (defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000)
x1 = __shfl_xor(x1, 4);
x2 = __shfl_xor(x2, 4);
#else
@ -695,7 +752,11 @@ EigenFloatContractionKernelInternal16x16(const LhsMapper lhs, const RhsMapper rh
#undef prefetch_lhs
#undef add_vals
#if defined(EIGEN_HIPCC)
#undef prefetch_rhs_hipcc
#endif
Index horiz_base = threadIdx.y*4+base_n;
if (!CHECK_LHS_BOUNDARY && !CHECK_RHS_BOUNDARY) {
for (int i = 0; i < 4; i++) {
@ -784,9 +845,33 @@ EigenFloatContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs,
results[i].x = results[i].y = results[i].z = results[i].w = 0;
}
#if defined(EIGEN_HIPCC)
#define prefetch_lhs_hipcc(reg, row, col) \
reg.x =lhs(row + 0, col); \
reg.y =lhs(row + 1, col); \
reg.z =lhs(row + 2, col); \
reg.w =lhs(row + 3, col);
#define prefetch_rhs_hipcc(reg, row, col) \
reg.x =rhs(row + 0, col); \
reg.y =rhs(row + 1, col); \
reg.z =rhs(row + 2, col); \
reg.w =rhs(row + 3, col);
#endif
Index lhs_vert = base_m+threadIdx.x*4+(threadIdx.y%4)*32;
for (Index k = 0; k < k_size; k += 32) {
#if defined(EIGEN_HIPCC)
lhs_pf0 = make_float4(0, 0, 0, 0);
lhs_pf1 = make_float4(0, 0, 0, 0);
lhs_pf2 = make_float4(0, 0, 0, 0);
lhs_pf3 = make_float4(0, 0, 0, 0);
rhs_pf0 = make_float4(0, 0, 0, 0);
rhs_pf1 = make_float4(0, 0, 0, 0);
#else
lhs_pf0 = internal::pset1<float4>(0);
lhs_pf1 = internal::pset1<float4>(0);
lhs_pf2 = internal::pset1<float4>(0);
@ -794,40 +879,85 @@ EigenFloatContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs,
rhs_pf0 = internal::pset1<float4>(0);
rhs_pf1 = internal::pset1<float4>(0);
#endif
if (!CHECK_LHS_BOUNDARY) {
if ((threadIdx.y/4+k+24) < k_size) {
#if defined(EIGEN_HIPCC)
prefetch_lhs_hipcc(lhs_pf0, lhs_vert, (threadIdx.y/4+k))
prefetch_lhs_hipcc(lhs_pf1, lhs_vert, (threadIdx.y/4+k+8))
prefetch_lhs_hipcc(lhs_pf2, lhs_vert, (threadIdx.y/4+k+16))
prefetch_lhs_hipcc(lhs_pf3, lhs_vert, (threadIdx.y/4+k+24))
#else
lhs_pf0 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
lhs_pf1 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
lhs_pf2 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16));
lhs_pf3 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+24));
#endif
} else if ((threadIdx.y/4+k+16) < k_size) {
#if defined(EIGEN_HIPCC)
prefetch_lhs_hipcc(lhs_pf0, lhs_vert, (threadIdx.y/4+k))
prefetch_lhs_hipcc(lhs_pf1, lhs_vert, (threadIdx.y/4+k+8))
prefetch_lhs_hipcc(lhs_pf2, lhs_vert, (threadIdx.y/4+k+16))
#else
lhs_pf0 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
lhs_pf1 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
lhs_pf2 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16));
#endif
} else if ((threadIdx.y/4+k+8) < k_size) {
#if defined(EIGEN_HIPCC)
prefetch_lhs_hipcc(lhs_pf0, lhs_vert, (threadIdx.y/4+k))
prefetch_lhs_hipcc(lhs_pf1, lhs_vert, (threadIdx.y/4+k+8))
#else
lhs_pf0 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
lhs_pf1 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
#endif
} else if ((threadIdx.y/4+k) < k_size) {
#if defined(EIGEN_HIPCC)
prefetch_lhs_hipcc(lhs_pf0, lhs_vert, (threadIdx.y/4+k))
#else
lhs_pf0 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
#endif
}
} else {
// just CHECK_LHS_BOUNDARY
if (lhs_vert + 3 < m_size) {
if ((threadIdx.y/4+k+24) < k_size) {
#if defined(EIGEN_HIPCC)
prefetch_lhs_hipcc(lhs_pf0, lhs_vert, (threadIdx.y/4+k))
prefetch_lhs_hipcc(lhs_pf1, lhs_vert, (threadIdx.y/4+k+8))
prefetch_lhs_hipcc(lhs_pf2, lhs_vert, (threadIdx.y/4+k+16))
prefetch_lhs_hipcc(lhs_pf3, lhs_vert, (threadIdx.y/4+k+24))
#else
lhs_pf0 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
lhs_pf1 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
lhs_pf2 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16));
lhs_pf3 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+24));
#endif
} else if ((threadIdx.y/4+k+16) < k_size) {
#if defined(EIGEN_HIPCC)
prefetch_lhs_hipcc(lhs_pf0, lhs_vert, (threadIdx.y/4+k))
prefetch_lhs_hipcc(lhs_pf1, lhs_vert, (threadIdx.y/4+k+8))
prefetch_lhs_hipcc(lhs_pf2, lhs_vert, (threadIdx.y/4+k+16))
#else
lhs_pf0 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
lhs_pf1 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
lhs_pf2 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16));
#endif
} else if ((threadIdx.y/4+k+8) < k_size) {
#if defined(EIGEN_HIPCC)
prefetch_lhs_hipcc(lhs_pf0, lhs_vert, (threadIdx.y/4+k))
prefetch_lhs_hipcc(lhs_pf1, lhs_vert, (threadIdx.y/4+k+8))
#else
lhs_pf0 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
lhs_pf1 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
#endif
} else if ((threadIdx.y/4+k) < k_size) {
#if defined(EIGEN_HIPCC)
prefetch_lhs_hipcc(lhs_pf0, lhs_vert, (threadIdx.y/4+k))
#else
lhs_pf0 =lhs.template loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
#endif
}
} else if (lhs_vert + 2 < m_size) {
if ((threadIdx.y/4+k+24) < k_size) {
@ -916,8 +1046,13 @@ EigenFloatContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs,
if (!CHECK_RHS_BOUNDARY) {
if ((rhs_vert + 3) < k_size) {
// just CHECK_RHS_BOUNDARY
#if defined(EIGEN_HIPCC)
prefetch_rhs_hipcc(rhs_pf0, rhs_vert, rhs_horiz0)
prefetch_rhs_hipcc(rhs_pf1, rhs_vert, rhs_horiz1)
#else
rhs_pf0 = rhs.template loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
rhs_pf1 = rhs.template loadPacket<Unaligned>(rhs_vert, rhs_horiz1);
#endif
} else if (rhs_vert + 2 < k_size) {
// just CHECK_RHS_BOUNDARY
rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
@ -939,8 +1074,13 @@ EigenFloatContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs,
if (rhs_horiz1 < n_size) {
if ((rhs_vert + 3) < k_size) {
// just CHECK_RHS_BOUNDARY
#if defined(EIGEN_HIPCC)
prefetch_rhs_hipcc(rhs_pf0, rhs_vert, rhs_horiz0)
prefetch_rhs_hipcc(rhs_pf1, rhs_vert, rhs_horiz1)
#else
rhs_pf0 = rhs.template loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
rhs_pf1 = rhs.template loadPacket<Unaligned>(rhs_vert, rhs_horiz1);
#endif
} else if (rhs_vert + 2 < k_size) {
// just CHECK_RHS_BOUNDARY
rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
@ -961,7 +1101,11 @@ EigenFloatContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs,
} else if (rhs_horiz0 < n_size) {
if ((rhs_vert + 3) < k_size) {
// just CHECK_RHS_BOUNDARY
#if defined(EIGEN_HIPCC)
prefetch_rhs_hipcc(rhs_pf0, rhs_vert, rhs_horiz0)
#else
rhs_pf0 = rhs.template loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
#endif
} else if ((rhs_vert + 2) < k_size) {
// just CHECK_RHS_BOUNDARY
rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
@ -1069,7 +1213,11 @@ EigenFloatContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs,
__syncthreads();
} // end loop over k
#if defined(EIGEN_HIPCC)
#undef prefetch_lhs_hipcc
#undef prefetch_rhs_hipcc
#endif
__syncthreads();
Index horiz_base = (threadIdx.y/4)*8+base_n;
if (!CHECK_LHS_BOUNDARY && !CHECK_RHS_BOUNDARY) {
@ -1134,7 +1282,11 @@ EigenFloatContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs,
template<typename Index, typename LhsMapper,
typename RhsMapper, typename OutputMapper>
__global__ void
#if defined(EIGEN_HIPCC)
__launch_bounds__(256, 1)
#else
__launch_bounds__(256)
#endif
EigenFloatContractionKernel(const LhsMapper lhs, const RhsMapper rhs,
const OutputMapper output,
const Index m_size, const Index n_size, const Index k_size) {
@ -1177,7 +1329,11 @@ EigenFloatContractionKernel(const LhsMapper lhs, const RhsMapper rhs,
template<typename Index, typename LhsMapper,
typename RhsMapper, typename OutputMapper>
__global__ void
#if defined(EIGEN_HIPCC)
__launch_bounds__(256, 1)
#else
__launch_bounds__(256)
#endif
EigenFloatContractionKernel16x16(const LhsMapper lhs, const RhsMapper rhs,
const OutputMapper output,
const Index m_size, const Index n_size, const Index k_size) {
@ -1323,7 +1479,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
const Index n_blocks = (n + 63) / 64;
const dim3 num_blocks(m_blocks, n_blocks, 1);
const dim3 block_size(8, 8, 8);
LAUNCH_CUDA_KERNEL((EigenContractionKernel<Scalar, Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k);
LAUNCH_GPU_KERNEL((EigenContractionKernel<Scalar, Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k);
}
};
@ -1334,13 +1490,13 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
const Index n_blocks = (n + 63) / 64;
const dim3 num_blocks(m_blocks, n_blocks, 1);
const dim3 block_size(16, 16, 1);
LAUNCH_CUDA_KERNEL((EigenFloatContractionKernel16x16<Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k);
LAUNCH_GPU_KERNEL((EigenFloatContractionKernel16x16<Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k);
} else {
const Index m_blocks = (m + 127) / 128;
const Index n_blocks = (n + 63) / 64;
const dim3 num_blocks(m_blocks, n_blocks, 1);
const dim3 block_size(8, 32, 1);
LAUNCH_CUDA_KERNEL((EigenFloatContractionKernel<Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k);
LAUNCH_GPU_KERNEL((EigenFloatContractionKernel<Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k);
}
}
};
@ -1384,12 +1540,17 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
OutputMapper output(buffer, m);
setCudaSharedMemConfig(cudaSharedMemBankSizeEightByte);
#if defined(EIGEN_USE_HIP)
setGpuSharedMemConfig(hipSharedMemBankSizeEightByte);
#else
setGpuSharedMemConfig(cudaSharedMemBankSizeEightByte);
#endif
LaunchKernels<LhsScalar, RhsScalar, Index, LhsMapper, RhsMapper, OutputMapper>::Run(lhs, rhs, output, m, n, k, this->m_device);
}
};
} // end namespace Eigen
#endif // EIGEN_USE_GPU and EIGEN_CUDACC
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_CUDA_H
#endif // EIGEN_USE_GPU and EIGEN_GPUCC
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_GPU_H

View File

@ -54,8 +54,8 @@ class IndexMapper {
}
}
array<Index, NumDims> cudaInputDimensions;
array<Index, NumDims> cudaOutputDimensions;
array<Index, NumDims> gpuInputDimensions;
array<Index, NumDims> gpuOutputDimensions;
array<Index, NumDims> tmp = dimensions;
array<Index, NumDims> ordering;
const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
@ -65,8 +65,8 @@ class IndexMapper {
const Index index = i + offset;
ordering[index] = indices[i];
tmp[indices[i]] = -1;
cudaInputDimensions[index] = input_dims[indices[i]];
cudaOutputDimensions[index] = dimensions[indices[i]];
gpuInputDimensions[index] = input_dims[indices[i]];
gpuOutputDimensions[index] = dimensions[indices[i]];
}
int written = static_cast<int>(Layout) == static_cast<int>(ColMajor)
@ -75,8 +75,8 @@ class IndexMapper {
for (int i = 0; i < NumDims; ++i) {
if (tmp[i] >= 0) {
ordering[written] = i;
cudaInputDimensions[written] = input_dims[i];
cudaOutputDimensions[written] = dimensions[i];
gpuInputDimensions[written] = input_dims[i];
gpuOutputDimensions[written] = dimensions[i];
++written;
}
}
@ -89,37 +89,37 @@ class IndexMapper {
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = 0; i < NumDims; ++i) {
if (i > NumKernelDims) {
m_cudaInputStrides[i] =
m_cudaInputStrides[i - 1] * cudaInputDimensions[i - 1];
m_cudaOutputStrides[i] =
m_cudaOutputStrides[i - 1] * cudaOutputDimensions[i - 1];
m_gpuInputStrides[i] =
m_gpuInputStrides[i - 1] * gpuInputDimensions[i - 1];
m_gpuOutputStrides[i] =
m_gpuOutputStrides[i - 1] * gpuOutputDimensions[i - 1];
} else {
m_cudaInputStrides[i] = 1;
m_cudaOutputStrides[i] = 1;
m_gpuInputStrides[i] = 1;
m_gpuOutputStrides[i] = 1;
}
}
} else {
for (int i = NumDims - 1; i >= 0; --i) {
if (static_cast<size_t>(i + 1) < offset) {
m_cudaInputStrides[i] =
m_cudaInputStrides[i + 1] * cudaInputDimensions[i + 1];
m_cudaOutputStrides[i] =
m_cudaOutputStrides[i + 1] * cudaOutputDimensions[i + 1];
m_gpuInputStrides[i] =
m_gpuInputStrides[i + 1] * gpuInputDimensions[i + 1];
m_gpuOutputStrides[i] =
m_gpuOutputStrides[i + 1] * gpuOutputDimensions[i + 1];
} else {
m_cudaInputStrides[i] = 1;
m_cudaOutputStrides[i] = 1;
m_gpuInputStrides[i] = 1;
m_gpuOutputStrides[i] = 1;
}
}
}
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputPlaneToTensorInputOffset(Index p) const {
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputPlaneToTensorInputOffset(Index p) const {
Index inputIndex = 0;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int d = NumDims - 1; d > NumKernelDims; --d) {
const Index idx = p / m_cudaInputStrides[d];
const Index idx = p / m_gpuInputStrides[d];
inputIndex += idx * m_inputStrides[d];
p -= idx * m_cudaInputStrides[d];
p -= idx * m_gpuInputStrides[d];
}
inputIndex += p * m_inputStrides[NumKernelDims];
} else {
@ -128,22 +128,22 @@ class IndexMapper {
limit = NumDims - NumKernelDims - 1;
}
for (int d = 0; d < limit; ++d) {
const Index idx = p / m_cudaInputStrides[d];
const Index idx = p / m_gpuInputStrides[d];
inputIndex += idx * m_inputStrides[d];
p -= idx * m_cudaInputStrides[d];
p -= idx * m_gpuInputStrides[d];
}
inputIndex += p * m_inputStrides[limit];
}
return inputIndex;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputPlaneToTensorOutputOffset(Index p) const {
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputPlaneToTensorOutputOffset(Index p) const {
Index outputIndex = 0;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int d = NumDims - 1; d > NumKernelDims; --d) {
const Index idx = p / m_cudaOutputStrides[d];
const Index idx = p / m_gpuOutputStrides[d];
outputIndex += idx * m_outputStrides[d];
p -= idx * m_cudaOutputStrides[d];
p -= idx * m_gpuOutputStrides[d];
}
outputIndex += p * m_outputStrides[NumKernelDims];
} else {
@ -152,44 +152,44 @@ class IndexMapper {
limit = NumDims - NumKernelDims - 1;
}
for (int d = 0; d < limit; ++d) {
const Index idx = p / m_cudaOutputStrides[d];
const Index idx = p / m_gpuOutputStrides[d];
outputIndex += idx * m_outputStrides[d];
p -= idx * m_cudaOutputStrides[d];
p -= idx * m_gpuOutputStrides[d];
}
outputIndex += p * m_outputStrides[limit];
}
return outputIndex;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i) const {
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i) const {
const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
? 0
: NumDims - NumKernelDims;
return i * m_inputStrides[offset];
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i) const {
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i) const {
const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
? 0
: NumDims - NumKernelDims;
return i * m_outputStrides[offset];
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i, Index j) const {
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i, Index j) const {
const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
? 0
: NumDims - NumKernelDims;
return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1];
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i, Index j) const {
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i, Index j) const {
const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
? 0
: NumDims - NumKernelDims;
return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1];
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i, Index j, Index k) const {
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i, Index j, Index k) const {
const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
? 0
: NumDims - NumKernelDims;
@ -197,7 +197,7 @@ class IndexMapper {
k * m_inputStrides[offset + 2];
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i, Index j, Index k) const {
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i, Index j, Index k) const {
const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
? 0
: NumDims - NumKernelDims;
@ -209,8 +209,8 @@ class IndexMapper {
static const int NumDims = internal::array_size<InputDims>::value;
array<Index, NumDims> m_inputStrides;
array<Index, NumDims> m_outputStrides;
array<Index, NumDims> m_cudaInputStrides;
array<Index, NumDims> m_cudaOutputStrides;
array<Index, NumDims> m_gpuInputStrides;
array<Index, NumDims> m_gpuOutputStrides;
};
@ -553,7 +553,7 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
// Use an optimized implementation of the evaluation code for GPUs whenever possible.
#if defined(EIGEN_USE_GPU) && defined(EIGEN_CUDACC)
#if defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC)
template <int StaticKernelSize>
struct GetKernelSize {
@ -576,8 +576,12 @@ __global__ void EigenConvolutionKernel1D(
indexMapper,
const float* __restrict kernel, const int numPlanes, const int numX,
const int maxX, const int kernelSize, float* buffer) {
#if defined(EIGEN_HIPCC)
HIP_DYNAMIC_SHARED(float, s)
#else
extern __shared__ float s[];
#endif
const int first_x = blockIdx.x * maxX;
const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSize>()(kernelSize);
@ -588,18 +592,18 @@ __global__ void EigenConvolutionKernel1D(
for (int p = first_plane + threadIdx.y; p < numPlanes; p += plane_stride) {
// Load inputs to shared memory
const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p);
const int plane_kernel_offset = threadIdx.y * num_x_input;
#pragma unroll
for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x);
const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x);
s[i + plane_kernel_offset] = eval.coeff(tensor_index);
}
__syncthreads();
// Compute the convolution
const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p);
#pragma unroll
for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
@ -609,7 +613,7 @@ __global__ void EigenConvolutionKernel1D(
for (int k = 0; k < GetKernelSize<StaticKernelSize>()(kernelSize); ++k) {
result += s[k + kernel_offset] * kernel[k];
}
const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x);
const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x);
buffer[tensor_index] = result;
}
__syncthreads();
@ -625,7 +629,11 @@ __global__ void EigenConvolutionKernel2D(
const float* __restrict kernel, const int numPlanes, const int numX,
const int maxX, const int numY, const int maxY, const int kernelSizeX,
const int kernelSizeY, float* buffer) {
#if defined(EIGEN_HIPCC)
HIP_DYNAMIC_SHARED(float, s)
#else
extern __shared__ float s[];
#endif
const int first_x = blockIdx.x * maxX;
const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
@ -642,7 +650,7 @@ __global__ void EigenConvolutionKernel2D(
for (int p = first_plane + threadIdx.z; p < numPlanes; p += plane_stride) {
const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p);
const int plane_kernel_offset = threadIdx.z * num_y_input;
// Load inputs to shared memory
@ -651,7 +659,7 @@ __global__ void EigenConvolutionKernel2D(
const int input_offset = num_x_input * (j + plane_kernel_offset);
#pragma unroll
for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x, j+first_y);
const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x, j+first_y);
s[i + input_offset] = eval.coeff(tensor_index);
}
}
@ -659,7 +667,7 @@ __global__ void EigenConvolutionKernel2D(
__syncthreads();
// Convolution
const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p);
#pragma unroll
for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
@ -675,7 +683,7 @@ __global__ void EigenConvolutionKernel2D(
result += s[k + input_offset] * kernel[k + kernel_offset];
}
}
const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x, j+first_y);
const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x, j+first_y);
buffer[tensor_index] = result;
}
}
@ -693,7 +701,11 @@ __global__ void EigenConvolutionKernel3D(
const size_t maxX, const size_t numY, const size_t maxY, const size_t numZ,
const size_t maxZ, const size_t kernelSizeX, const size_t kernelSizeY,
const size_t kernelSizeZ, float* buffer) {
#if defined(EIGEN_HIPCC)
HIP_DYNAMIC_SHARED(float, s)
#else
extern __shared__ float s[];
#endif
// Load inputs to shared memory
const int first_x = blockIdx.x * maxX;
@ -710,13 +722,13 @@ __global__ void EigenConvolutionKernel3D(
for (int p = 0; p < numPlanes; ++p) {
const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p);
const int plane_kernel_offset = 0;
for (int k = threadIdx.z; k < num_z_input; k += blockDim.z) {
for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x, j+first_y, k+first_z);
const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x, j+first_y, k+first_z);
s[i + num_x_input * (j + num_y_input * (k + plane_kernel_offset))] = eval.coeff(tensor_index);
}
}
@ -728,7 +740,7 @@ __global__ void EigenConvolutionKernel3D(
const int num_z_output = last_z - first_z + 1;
const int num_y_output = last_y - first_y + 1;
const int num_x_output = last_x - first_x + 1;
const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p);
for (int k = threadIdx.z; k < num_z_output; k += blockDim.z) {
for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
@ -741,7 +753,7 @@ __global__ void EigenConvolutionKernel3D(
}
}
}
const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x, j+first_y, k+first_z);
const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x, j+first_y, k+first_z);
buffer[tensor_index] = result;
}
}
@ -854,9 +866,9 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
typedef typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions InputDims;
const int maxSharedMem = m_device.sharedMemPerBlock();
const int maxThreadsPerBlock = m_device.maxCudaThreadsPerBlock();
const int maxBlocksPerProcessor = m_device.maxCudaThreadsPerMultiProcessor() / maxThreadsPerBlock;
const int numMultiProcessors = m_device.getNumCudaMultiProcessors();
const int maxThreadsPerBlock = m_device.maxGpuThreadsPerBlock();
const int maxBlocksPerProcessor = m_device.maxGpuThreadsPerMultiProcessor() / maxThreadsPerBlock;
const int numMultiProcessors = m_device.getNumGpuMultiProcessors();
const int warpSize = 32;
switch (NumKernelDims) {
@ -908,15 +920,15 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
m_inputImpl.dimensions(), kernel_dims, indices);
switch(kernel_size) {
case 4: {
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 4, data);
LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 4, data);
break;
}
case 7: {
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 7, data);
LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 7, data);
break;
}
default: {
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, kernel_size, data);
LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, kernel_size, data);
}
}
break;
@ -969,11 +981,11 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
case 4: {
switch (kernel_size_y) {
case 7: {
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, 7, data);
LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, 7, data);
break;
}
default: {
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, kernel_size_y, data);
LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, kernel_size_y, data);
break;
}
}
@ -982,18 +994,18 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
case 7: {
switch (kernel_size_y) {
case 4: {
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, 4, data);
LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, 4, data);
break;
}
default: {
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, kernel_size_y, data);
LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, kernel_size_y, data);
break;
}
}
break;
}
default: {
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, kernel_size_x, kernel_size_y, data);
LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, kernel_size_x, kernel_size_y, data);
break;
}
}
@ -1039,7 +1051,7 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
internal::IndexMapper<Index, InputDims, 3, Layout> indexMapper(
m_inputImpl.dimensions(), kernel_dims, indices);
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel3D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, numZ, maxZ, kernel_size_x, kernel_size_y, kernel_size_z, data);
LAUNCH_GPU_KERNEL((EigenConvolutionKernel3D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, numZ, maxZ, kernel_size_x, kernel_size_y, kernel_size_z, data);
break;
}

View File

@ -7,21 +7,26 @@
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#if defined(EIGEN_USE_GPU) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H)
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H
#if defined(EIGEN_USE_GPU) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_GPU_H)
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_GPU_H
// This header file container defines fo gpu* macros which will resolve to
// their equivalent hip* or cuda* versions depending on the compiler in use
// A separte header (included at the end of this file) will undefine all
#include "TensorGpuHipCudaDefines.h"
namespace Eigen {
static const int kCudaScratchSize = 1024;
static const int kGpuScratchSize = 1024;
// This defines an interface that GPUDevice can take to use
// CUDA streams underneath.
// HIP / CUDA streams underneath.
class StreamInterface {
public:
virtual ~StreamInterface() {}
virtual const cudaStream_t& stream() const = 0;
virtual const cudaDeviceProp& deviceProperties() const = 0;
virtual const gpuStream_t& stream() const = 0;
virtual const gpuDeviceProp_t& deviceProperties() const = 0;
// Allocate memory on the actual device where the computation will run
virtual void* allocate(size_t num_bytes) const = 0;
@ -37,7 +42,7 @@ class StreamInterface {
virtual unsigned int* semaphore() const = 0;
};
static cudaDeviceProp* m_deviceProperties;
static gpuDeviceProp_t* m_deviceProperties;
static bool m_devicePropInitialized = false;
static void initializeDeviceProp() {
@ -58,23 +63,23 @@ static void initializeDeviceProp() {
#endif
// We're the first thread to reach this point.
int num_devices;
cudaError_t status = cudaGetDeviceCount(&num_devices);
if (status != cudaSuccess) {
std::cerr << "Failed to get the number of CUDA devices: "
<< cudaGetErrorString(status)
gpuError_t status = gpuGetDeviceCount(&num_devices);
if (status != gpuSuccess) {
std::cerr << "Failed to get the number of GPU devices: "
<< gpuGetErrorString(status)
<< std::endl;
assert(status == cudaSuccess);
assert(status == gpuSuccess);
}
m_deviceProperties = new cudaDeviceProp[num_devices];
m_deviceProperties = new gpuDeviceProp_t[num_devices];
for (int i = 0; i < num_devices; ++i) {
status = cudaGetDeviceProperties(&m_deviceProperties[i], i);
if (status != cudaSuccess) {
std::cerr << "Failed to initialize CUDA device #"
status = gpuGetDeviceProperties(&m_deviceProperties[i], i);
if (status != gpuSuccess) {
std::cerr << "Failed to initialize GPU device #"
<< i
<< ": "
<< cudaGetErrorString(status)
<< gpuGetErrorString(status)
<< std::endl;
assert(status == cudaSuccess);
assert(status == gpuSuccess);
}
}
@ -94,87 +99,87 @@ static void initializeDeviceProp() {
}
}
static const cudaStream_t default_stream = cudaStreamDefault;
static const gpuStream_t default_stream = gpuStreamDefault;
class CudaStreamDevice : public StreamInterface {
class GpuStreamDevice : public StreamInterface {
public:
// Use the default stream on the current device
CudaStreamDevice() : stream_(&default_stream), scratch_(NULL), semaphore_(NULL) {
cudaGetDevice(&device_);
GpuStreamDevice() : stream_(&default_stream), scratch_(NULL), semaphore_(NULL) {
gpuGetDevice(&device_);
initializeDeviceProp();
}
// Use the default stream on the specified device
CudaStreamDevice(int device) : stream_(&default_stream), device_(device), scratch_(NULL), semaphore_(NULL) {
GpuStreamDevice(int device) : stream_(&default_stream), device_(device), scratch_(NULL), semaphore_(NULL) {
initializeDeviceProp();
}
// Use the specified stream. Note that it's the
// caller responsibility to ensure that the stream can run on
// the specified device. If no device is specified the code
// assumes that the stream is associated to the current gpu device.
CudaStreamDevice(const cudaStream_t* stream, int device = -1)
GpuStreamDevice(const gpuStream_t* stream, int device = -1)
: stream_(stream), device_(device), scratch_(NULL), semaphore_(NULL) {
if (device < 0) {
cudaGetDevice(&device_);
gpuGetDevice(&device_);
} else {
int num_devices;
cudaError_t err = cudaGetDeviceCount(&num_devices);
gpuError_t err = gpuGetDeviceCount(&num_devices);
EIGEN_UNUSED_VARIABLE(err)
assert(err == cudaSuccess);
assert(err == gpuSuccess);
assert(device < num_devices);
device_ = device;
}
initializeDeviceProp();
}
virtual ~CudaStreamDevice() {
virtual ~GpuStreamDevice() {
if (scratch_) {
deallocate(scratch_);
}
}
const cudaStream_t& stream() const { return *stream_; }
const cudaDeviceProp& deviceProperties() const {
const gpuStream_t& stream() const { return *stream_; }
const gpuDeviceProp_t& deviceProperties() const {
return m_deviceProperties[device_];
}
virtual void* allocate(size_t num_bytes) const {
cudaError_t err = cudaSetDevice(device_);
gpuError_t err = gpuSetDevice(device_);
EIGEN_UNUSED_VARIABLE(err)
assert(err == cudaSuccess);
assert(err == gpuSuccess);
void* result;
err = cudaMalloc(&result, num_bytes);
assert(err == cudaSuccess);
err = gpuMalloc(&result, num_bytes);
assert(err == gpuSuccess);
assert(result != NULL);
return result;
}
virtual void deallocate(void* buffer) const {
cudaError_t err = cudaSetDevice(device_);
gpuError_t err = gpuSetDevice(device_);
EIGEN_UNUSED_VARIABLE(err)
assert(err == cudaSuccess);
assert(err == gpuSuccess);
assert(buffer != NULL);
err = cudaFree(buffer);
assert(err == cudaSuccess);
err = gpuFree(buffer);
assert(err == gpuSuccess);
}
virtual void* scratchpad() const {
if (scratch_ == NULL) {
scratch_ = allocate(kCudaScratchSize + sizeof(unsigned int));
scratch_ = allocate(kGpuScratchSize + sizeof(unsigned int));
}
return scratch_;
}
virtual unsigned int* semaphore() const {
if (semaphore_ == NULL) {
char* scratch = static_cast<char*>(scratchpad()) + kCudaScratchSize;
char* scratch = static_cast<char*>(scratchpad()) + kGpuScratchSize;
semaphore_ = reinterpret_cast<unsigned int*>(scratch);
cudaError_t err = cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_);
gpuError_t err = gpuMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_);
EIGEN_UNUSED_VARIABLE(err)
assert(err == cudaSuccess);
assert(err == gpuSuccess);
}
return semaphore_;
}
private:
const cudaStream_t* stream_;
const gpuStream_t* stream_;
int device_;
mutable void* scratch_;
mutable unsigned int* semaphore_;
@ -190,7 +195,7 @@ struct GpuDevice {
eigen_assert(stream);
}
// TODO(bsteiner): This is an internal API, we should not expose it.
EIGEN_STRONG_INLINE const cudaStream_t& stream() const {
EIGEN_STRONG_INLINE const gpuStream_t& stream() const {
return stream_->stream();
}
@ -211,11 +216,11 @@ struct GpuDevice {
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
#ifndef EIGEN_CUDA_ARCH
cudaError_t err = cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToDevice,
#ifndef EIGEN_GPU_COMPILE_PHASE
gpuError_t err = gpuMemcpyAsync(dst, src, n, gpuMemcpyDeviceToDevice,
stream_->stream());
EIGEN_UNUSED_VARIABLE(err)
assert(err == cudaSuccess);
assert(err == gpuSuccess);
#else
EIGEN_UNUSED_VARIABLE(dst);
EIGEN_UNUSED_VARIABLE(src);
@ -225,24 +230,24 @@ struct GpuDevice {
}
EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
cudaError_t err =
cudaMemcpyAsync(dst, src, n, cudaMemcpyHostToDevice, stream_->stream());
gpuError_t err =
gpuMemcpyAsync(dst, src, n, gpuMemcpyHostToDevice, stream_->stream());
EIGEN_UNUSED_VARIABLE(err)
assert(err == cudaSuccess);
assert(err == gpuSuccess);
}
EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
cudaError_t err =
cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToHost, stream_->stream());
gpuError_t err =
gpuMemcpyAsync(dst, src, n, gpuMemcpyDeviceToHost, stream_->stream());
EIGEN_UNUSED_VARIABLE(err)
assert(err == cudaSuccess);
assert(err == gpuSuccess);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
#ifndef EIGEN_CUDA_ARCH
cudaError_t err = cudaMemsetAsync(buffer, c, n, stream_->stream());
#ifndef EIGEN_GPU_COMPILE_PHASE
gpuError_t err = gpuMemsetAsync(buffer, c, n, stream_->stream());
EIGEN_UNUSED_VARIABLE(err)
assert(err == cudaSuccess);
assert(err == gpuSuccess);
#else
eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
@ -260,31 +265,31 @@ struct GpuDevice {
EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
// We won't try to take advantage of the l2 cache for the time being, and
// there is no l3 cache on cuda devices.
// there is no l3 cache on hip/cuda devices.
return firstLevelCacheSize();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void synchronize() const {
#if defined(EIGEN_CUDACC) && !defined(EIGEN_CUDA_ARCH)
cudaError_t err = cudaStreamSynchronize(stream_->stream());
if (err != cudaSuccess) {
std::cerr << "Error detected in CUDA stream: "
<< cudaGetErrorString(err)
#if defined(EIGEN_GPUCC) && !defined(EIGEN_GPU_COMPILE_PHASE)
gpuError_t err = gpuStreamSynchronize(stream_->stream());
if (err != gpuSuccess) {
std::cerr << "Error detected in GPU stream: "
<< gpuGetErrorString(err)
<< std::endl;
assert(err == cudaSuccess);
assert(err == gpuSuccess);
}
#else
assert(false && "The default device should be used instead to generate kernel code");
#endif
}
EIGEN_STRONG_INLINE int getNumCudaMultiProcessors() const {
EIGEN_STRONG_INLINE int getNumGpuMultiProcessors() const {
return stream_->deviceProperties().multiProcessorCount;
}
EIGEN_STRONG_INLINE int maxCudaThreadsPerBlock() const {
EIGEN_STRONG_INLINE int maxGpuThreadsPerBlock() const {
return stream_->deviceProperties().maxThreadsPerBlock;
}
EIGEN_STRONG_INLINE int maxCudaThreadsPerMultiProcessor() const {
EIGEN_STRONG_INLINE int maxGpuThreadsPerMultiProcessor() const {
return stream_->deviceProperties().maxThreadsPerMultiProcessor;
}
EIGEN_STRONG_INLINE int sharedMemPerBlock() const {
@ -301,12 +306,12 @@ struct GpuDevice {
return max_blocks_;
}
// This function checks if the CUDA runtime recorded an error for the
// This function checks if the GPU runtime recorded an error for the
// underlying stream device.
inline bool ok() const {
#ifdef EIGEN_CUDACC
cudaError_t error = cudaStreamQuery(stream_->stream());
return (error == cudaSuccess) || (error == cudaErrorNotReady);
#ifdef EIGEN_GPUCC
gpuError_t error = gpuStreamQuery(stream_->stream());
return (error == gpuSuccess) || (error == gpuErrorNotReady);
#else
return false;
#endif
@ -317,18 +322,27 @@ struct GpuDevice {
int max_blocks_;
};
#define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
#if defined(EIGEN_HIPCC)
#define LAUNCH_GPU_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
hipLaunchKernelGGL(kernel, dim3(gridsize), dim3(blocksize), (sharedmem), (device).stream(), __VA_ARGS__); \
assert(hipGetLastError() == hipSuccess);
#else
#define LAUNCH_GPU_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
(kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \
assert(cudaGetLastError() == cudaSuccess);
#endif
// FIXME: Should be device and kernel specific.
#ifdef EIGEN_CUDACC
static EIGEN_DEVICE_FUNC inline void setCudaSharedMemConfig(cudaSharedMemConfig config) {
#ifndef EIGEN_CUDA_ARCH
cudaError_t status = cudaDeviceSetSharedMemConfig(config);
#ifdef EIGEN_GPUCC
static EIGEN_DEVICE_FUNC inline void setGpuSharedMemConfig(gpuSharedMemConfig config) {
#ifndef EIGEN_GPU_COMPILE_PHASE
gpuError_t status = gpuDeviceSetSharedMemConfig(config);
EIGEN_UNUSED_VARIABLE(status)
assert(status == cudaSuccess);
assert(status == gpuSuccess);
#else
EIGEN_UNUSED_VARIABLE(config)
#endif
@ -337,4 +351,7 @@ static EIGEN_DEVICE_FUNC inline void setCudaSharedMemConfig(cudaSharedMemConfig
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H
// undefine all the gpu* macros we defined at the beginning of the file
#include "TensorGpuHipCudaUndefines.h"
#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_GPU_H

View File

@ -250,28 +250,17 @@ inline void TensorExecutor<Expression, GpuDevice, Vectorizable>::run(
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
if (needs_assign) {
#if defined(EIGEN_HIPCC)
const int block_size = device.maxHipThreadsPerBlock();
const int max_blocks = device.getNumHipMultiProcessors() *
device.maxHipThreadsPerMultiProcessor() / block_size;
const Index size = array_prod(evaluator.dimensions());
// Create a least one block to ensure we won't crash when tensorflow calls with tensors of size 0.
const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, divup<int>(size, block_size)), 1);
hipLaunchKernelGGL(HIP_KERNEL_NAME(EigenMetaKernel<TensorEvaluator<Expression, GpuDevice>, Index>),
dim3(num_blocks), dim3(block_size), 0, device.stream(), evaluator, size);
#else
const int block_size = device.maxCudaThreadsPerBlock();
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / block_size;
const int block_size = device.maxGpuThreadsPerBlock();
const int max_blocks = device.getNumGpuMultiProcessors() *
device.maxGpuThreadsPerMultiProcessor() / block_size;
const Index size = array_prod(evaluator.dimensions());
// Create a least one block to ensure we won't crash when tensorflow calls with tensors of size 0.
const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, divup<int>(size, block_size)), 1);
LAUNCH_CUDA_KERNEL(
LAUNCH_GPU_KERNEL(
(EigenMetaKernel<TensorEvaluator<Expression, GpuDevice>, Index>),
num_blocks, block_size, 0, device, evaluator, size);
#endif
}
evaluator.cleanup();
}

View File

@ -0,0 +1,86 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
// Copyright (C) 2018 Deven Desai <deven.desai.amd@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#if defined(EIGEN_USE_GPU) && !defined(EIGEN_CXX11_TENSOR_GPU_HIP_CUDA_DEFINES_H)
#define EIGEN_CXX11_TENSOR_GPU_HIP_CUDA_DEFINES_H
// Note that we are using EIGEN_USE_HIP here instead of EIGEN_HIPCC...this is by design
// There is code in the Tensorflow codebase that will define EIGEN_USE_GPU, but
// for some reason gets sent to the gcc/host compiler instead of the gpu/nvcc/hipcc compiler
// When compiling such files, gcc will end up trying to pick up the CUDA headers by
// default (see the code within "unsupported/Eigen/CXX11/Tensor" that is guarded by EIGEN_USE_GPU)
// This will obsviously not work when trying to compile tensorflow on a sytem with no CUDA
// To work around this issue for HIP systems (and leave the default behaviour intact), the
// HIP tensorflow build defines EIGEN_USE_HIP when compiling all source files, and
// "unsupported/Eigen/CXX11/Tensor" has been updated to use HIP header when EIGEN_USE_HIP is
// defined. In continuation of that requirement, the guard here needs to be EIGEN_USE_HIP as well
#if defined(EIGEN_USE_HIP)
#define gpuStream_t hipStream_t
#define gpuDeviceProp_t hipDeviceProp_t
#define gpuError_t hipError_t
#define gpuSuccess hipSuccess
#define gpuErrorNotReady hipErrorNotReady
#define gpuGetDeviceCount hipGetDeviceCount
#define gpuGetErrorString hipGetErrorString
#define gpuGetDeviceProperties hipGetDeviceProperties
// FIXME : use hipStreamDefault instead of 0x00
#define gpuStreamDefault 0x00
#define gpuGetDevice hipGetDevice
#define gpuSetDevice hipSetDevice
#define gpuMalloc hipMalloc
#define gpuFree hipFree
#define gpuMemsetAsync hipMemsetAsync
#define gpuMemcpyAsync hipMemcpyAsync
#define gpuMemcpyDeviceToDevice hipMemcpyDeviceToDevice
#define gpuMemcpyDeviceToHost hipMemcpyDeviceToHost
#define gpuMemcpyHostToDevice hipMemcpyHostToDevice
#define gpuStreamQuery hipStreamQuery
#define gpuSharedMemConfig hipSharedMemConfig
#define gpuDeviceSetSharedMemConfig hipDeviceSetSharedMemConfig
#define gpuStreamSynchronize hipStreamSynchronize
#define gpuMemcpy hipMemcpy
#else
#define gpuStream_t cudaStream_t
#define gpuDeviceProp_t cudaDeviceProp
#define gpuError_t cudaError_t
#define gpuSuccess cudaSuccess
#define gpuErrorNotReady cudaErrorNotReady
#define gpuGetDeviceCount cudaGetDeviceCount
#define gpuGetErrorString cudaGetErrorString
#define gpuGetDeviceProperties cudaGetDeviceProperties
#define gpuStreamDefault cudaStreamDefault
#define gpuGetDevice cudaGetDevice
#define gpuSetDevice cudaSetDevice
#define gpuMalloc cudaMalloc
#define gpuFree cudaFree
#define gpuMemsetAsync cudaMemsetAsync
#define gpuMemcpyAsync cudaMemcpyAsync
#define gpuMemcpyDeviceToDevice cudaMemcpyDeviceToDevice
#define gpuMemcpyDeviceToHost cudaMemcpyDeviceToHost
#define gpuMemcpyHostToDevice cudaMemcpyHostToDevice
#define gpuStreamQuery cudaStreamQuery
#define gpuSharedMemConfig cudaSharedMemConfig
#define gpuDeviceSetSharedMemConfig cudaDeviceSetSharedMemConfig
#define gpuStreamSynchronize cudaStreamSynchronize
#define gpuMemcpy cudaMemcpy
#endif
#if defined(EIGEN_HIP_DEVICE_COMPILE)
// HIPCC does not support the use of assert on the GPU side.
#undef assert
#define assert(COND)
#endif
#endif // EIGEN_CXX11_TENSOR_GPU_HIP_CUDA_DEFINES_H

View File

@ -0,0 +1,39 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
// Copyright (C) 2018 Deven Desai <deven.desai.amd@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#if defined(EIGEN_CXX11_TENSOR_GPU_HIP_CUDA_DEFINES_H)
#undef gpuStream_t
#undef gpuDeviceProp_t
#undef gpuError_t
#undef gpuSuccess
#undef gpuErrorNotReady
#undef gpuGetDeviceCount
#undef gpuGetErrorString
#undef gpuGetDeviceProperties
#undef gpuStreamDefault
#undef gpuGetDevice
#undef gpuSetDevice
#undef gpuMalloc
#undef gpuFree
#undef gpuMemsetAsync
#undef gpuMemcpyAsync
#undef gpuMemcpyDeviceToDevice
#undef gpuMemcpyDeviceToHost
#undef gpuMemcpyHostToDevice
#undef gpuStreamQuery
#undef gpuSharedMemConfig
#undef gpuDeviceSetSharedMemConfig
#undef gpuStreamSynchronize
#undef gpuMemcpy
#undef EIGEN_CXX11_TENSOR_GPU_HIP_CUDA_DEFINES_H
#endif // EIGEN_CXX11_TENSOR_GPU_HIP_CUDA_DEFINES_H

View File

@ -7,23 +7,23 @@
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H
#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H
namespace Eigen {
namespace internal {
#if defined(EIGEN_USE_GPU) && defined(EIGEN_CUDACC)
#if defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC)
// Full reducers for GPU, don't vectorize for now
// Reducer function that enables multiple cuda thread to safely accumulate at the same
// Reducer function that enables multiple gpu thread to safely accumulate at the same
// output address. It basically reads the current value of the output variable, and
// attempts to update it with the new value. If in the meantime another cuda thread
// attempts to update it with the new value. If in the meantime another gpu thread
// updated the content of the output address it will try again.
template <typename T, typename R>
__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
#if EIGEN_CUDA_ARCH >= 300
#if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300)
if (sizeof(T) == 4)
{
unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
@ -79,7 +79,7 @@ __device__ inline double atomicExchCustom(double* address, double val) {
return __longlong_as_double(atomicExch(address_as_ull, __double_as_longlong(val)));
}
#ifdef EIGEN_HAS_CUDA_FP16
#ifdef EIGEN_HAS_GPU_FP16
template <template <typename T> class R>
__device__ inline void atomicReduce(half2* output, half2 accum, R<half>& reducer) {
unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
@ -98,11 +98,11 @@ __device__ inline void atomicReduce(half2* output, half2 accum, R<half>& reducer
}
}
}
#endif // EIGEN_HAS_CUDA_FP16
#endif // EIGEN_HAS_GPU_FP16
template <>
__device__ inline void atomicReduce(float* output, float accum, SumReducer<float>&) {
#if EIGEN_CUDA_ARCH >= 300
#if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300)
atomicAdd(output, accum);
#else // EIGEN_CUDA_ARCH >= 300
assert(0 && "Shouldn't be called on unsupported device");
@ -124,7 +124,7 @@ template <int BlockSize, int NumPerThread, typename Self,
typename Reducer, typename Index>
__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
typename Self::CoeffReturnType* output, unsigned int* semaphore) {
#if EIGEN_CUDA_ARCH >= 300
#if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300)
// Initialize the output value
const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
if (gridDim.x == 1) {
@ -168,7 +168,14 @@ __global__ void FullReductionKernel(Reducer reducer, const Self input, Index num
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
#if defined(EIGEN_HIPCC)
// XXX use std::is_floating_point to determine the type of accum
if (std::is_floating_point<typename Self::CoeffReturnType>::value) {
reducer.reduce(__shfl_down(static_cast<float>(accum), offset, warpSize), &accum);
} else {
reducer.reduce(__shfl_down(static_cast<int>(accum), offset, warpSize), &accum);
}
#elif defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
reducer.reduce(__shfl_down(accum, offset, warpSize), &accum);
#else
reducer.reduce(__shfl_down_sync(0xFFFFFFFF, accum, offset, warpSize), &accum);
@ -182,6 +189,9 @@ __global__ void FullReductionKernel(Reducer reducer, const Self input, Index num
if (gridDim.x > 1 && threadIdx.x == 0) {
// Let the last block reset the semaphore
atomicInc(semaphore, gridDim.x + 1);
#if defined(EIGEN_HIPCC)
__threadfence_system();
#endif
}
#else // EIGEN_CUDA_ARCH >= 300
assert(0 && "Shouldn't be called on unsupported device");
@ -189,7 +199,7 @@ __global__ void FullReductionKernel(Reducer reducer, const Self input, Index num
}
#ifdef EIGEN_HAS_CUDA_FP16
#ifdef EIGEN_HAS_GPU_FP16
template <typename Self,
typename Reducer, typename Index>
__global__ void ReductionInitFullReduxKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half2* scratch) {
@ -227,6 +237,21 @@ __global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input,
const Index first_index = blockIdx.x * BlockSize * NumPerThread + 2*threadIdx.x;
// Initialize the output value if it wasn't initialized by the ReductionInitKernel
#if defined(EIGEN_HIPCC)
if (gridDim.x == 1 && first_index == 0) {
if (num_coeffs % 2 != 0) {
half last = input.m_impl.coeff(num_coeffs-1);
*scratch = __halves2half2(last, reducer.initialize());
} else {
*scratch = reducer.template initializePacket<half2>();
}
__syncthreads();
}
#else
if (gridDim.x == 1) {
if (first_index == 0) {
if (num_coeffs % 2 != 0) {
@ -238,6 +263,8 @@ __global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input,
}
__syncthreads();
}
#endif
half2 accum = reducer.template initializePacket<half2>();
const Index max_iter = numext::mini<Index>((num_coeffs - first_index) / 2, NumPerThread*BlockSize / 2);
@ -250,7 +277,13 @@ __global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input,
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
#if defined(EIGEN_HIPCC)
// FIXME : remove this workaround once we have native half/half2 support for __shfl_down
union { int i; half2 h; } wka_in, wka_out;
wka_in.h = accum;
wka_out.i = __shfl_down(wka_in.i, offset, warpSize);
reducer.reducePacket(wka_out.h, &accum);
#elif defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
reducer.reducePacket(__shfl_down(accum, offset, warpSize), &accum);
#else
int temp = __shfl_down_sync(0xFFFFFFFF, *(int*)(&accum), (unsigned)offset, warpSize);
@ -262,6 +295,17 @@ __global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input,
atomicReduce(scratch, accum, reducer);
}
#if defined(EIGEN_HIPCC)
__syncthreads();
if (gridDim.x == 1 && first_index == 0) {
half tmp = __low2half(*scratch);
reducer.reduce(__high2half(*scratch), &tmp);
*output = tmp;
}
#else
if (gridDim.x == 1) {
__syncthreads();
if (first_index == 0) {
@ -270,6 +314,8 @@ __global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input,
*output = tmp;
}
}
#endif
}
template <typename Op>
@ -280,7 +326,7 @@ __global__ void ReductionCleanupKernelHalfFloat(Op& reducer, half* output, half2
*output = tmp;
}
#endif // EIGEN_HAS_CUDA_FP16
#endif // EIGEN_HAS_GPU_FP16
template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void>
struct FullReductionLauncher {
@ -298,6 +344,7 @@ struct FullReductionLauncher<
internal::is_same<double, OutputType>::value,
void>::type> {
static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs) {
typedef typename Self::Index Index;
const int block_size = 256;
const int num_per_thread = 128;
@ -308,12 +355,12 @@ struct FullReductionLauncher<
semaphore = device.semaphore();
}
LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread, Self, Op, Index>),
LAUNCH_GPU_KERNEL((FullReductionKernel<block_size, num_per_thread, Self, Op, Index>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, semaphore);
}
};
#ifdef EIGEN_HAS_CUDA_FP16
#ifdef EIGEN_HAS_GPU_FP16
template <typename Self, typename Op>
struct FullReductionLauncher<Self, Op, Eigen::half, false> {
static void run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index) {
@ -334,20 +381,20 @@ struct FullReductionLauncher<Self, Op, Eigen::half, true> {
if (num_blocks > 1) {
// We initialize the output and the scrathpad outside the reduction kernel when we can't be sure that there
// won't be a race conditions between multiple thread blocks.
LAUNCH_CUDA_KERNEL((ReductionInitFullReduxKernelHalfFloat<Self, Op, Index>),
LAUNCH_GPU_KERNEL((ReductionInitFullReduxKernelHalfFloat<Self, Op, Index>),
1, 1, 0, device, reducer, self, num_coeffs, scratch);
}
LAUNCH_CUDA_KERNEL((FullReductionKernelHalfFloat<block_size, num_per_thread, Self, Op, Index>),
LAUNCH_GPU_KERNEL((FullReductionKernelHalfFloat<block_size, num_per_thread, Self, Op, Index>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, scratch);
if (num_blocks > 1) {
LAUNCH_CUDA_KERNEL((ReductionCleanupKernelHalfFloat<Op>),
LAUNCH_GPU_KERNEL((ReductionCleanupKernelHalfFloat<Op>),
1, 1, 0, device, reducer, output, scratch);
}
}
};
#endif // EIGEN_HAS_CUDA_FP16
#endif // EIGEN_HAS_GPU_FP16
template <typename Self, typename Op, bool Vectorizable>
@ -355,16 +402,16 @@ struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
// Unfortunately nvidia doesn't support well exotic types such as complex,
// so reduce the scope of the optimized version of the code to the simple cases
// of doubles, floats and half floats
#ifdef EIGEN_HAS_CUDA_FP16
#ifdef EIGEN_HAS_GPU_FP16
static const bool HasOptimizedImplementation = !Op::IsStateful &&
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
internal::is_same<typename Self::CoeffReturnType, double>::value ||
(internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
#else // EIGEN_HAS_CUDA_FP16
#else // EIGEN_HAS_GPU_FP16
static const bool HasOptimizedImplementation = !Op::IsStateful &&
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
internal::is_same<typename Self::CoeffReturnType, double>::value);
#endif // EIGEN_HAS_CUDA_FP16
#endif // EIGEN_HAS_GPU_FP16
template <typename OutputType>
static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
@ -384,7 +431,7 @@ template <int NumPerThread, typename Self,
typename Reducer, typename Index>
__global__ void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
typename Self::CoeffReturnType* output) {
#if EIGEN_CUDA_ARCH >= 300
#if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300)
typedef typename Self::CoeffReturnType Type;
eigen_assert(blockDim.y == 1);
eigen_assert(blockDim.z == 1);
@ -437,7 +484,14 @@ __global__ void InnerReductionKernel(Reducer reducer, const Self input, Index nu
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
#if defined(EIGEN_HIPCC)
// XXX use std::is_floating_point to determine the type of reduced_val
if (std::is_floating_point<Type>::value) {
reducer.reduce(__shfl_down(static_cast<float>(reduced_val), offset), &reduced_val);
} else {
reducer.reduce(__shfl_down(static_cast<int>(reduced_val), offset), &reduced_val);
}
#elif defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
reducer.reduce(__shfl_down(reduced_val, offset), &reduced_val);
#else
reducer.reduce(__shfl_down_sync(0xFFFFFFFF, reduced_val, offset), &reduced_val);
@ -454,7 +508,7 @@ __global__ void InnerReductionKernel(Reducer reducer, const Self input, Index nu
#endif // EIGEN_CUDA_ARCH >= 300
}
#ifdef EIGEN_HAS_CUDA_FP16
#ifdef EIGEN_HAS_GPU_FP16
template <int NumPerThread, typename Self,
typename Reducer, typename Index>
@ -531,7 +585,18 @@ __global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input,
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
#if defined(EIGEN_HIPCC)
// FIXME : remove this workaround once we have native half/half2 support for __shfl_down
union { int i; half2 h; } wka_in, wka_out;
wka_in.h = reduced_val1;
wka_out.i = __shfl_down(wka_in.i, offset, warpSize);
reducer.reducePacket(wka_out.h, &reduced_val1);
wka_in.h = reduced_val2;
wka_out.i = __shfl_down(wka_in.i, offset, warpSize);
reducer.reducePacket(wka_out.h, &reduced_val2);
#elif defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
reducer.reducePacket(__shfl_down(reduced_val1, offset, warpSize), &reduced_val1);
reducer.reducePacket(__shfl_down(reduced_val2, offset, warpSize), &reduced_val2);
#else
@ -556,7 +621,7 @@ __global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input,
}
}
#endif // EIGEN_HAS_CUDA_FP16
#endif // EIGEN_HAS_GPU_FP16
template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void>
struct InnerReductionLauncher {
@ -581,30 +646,30 @@ struct InnerReductionLauncher<
const int block_size = 256;
const int num_per_thread = 128;
const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / block_size;
const int max_blocks = device.getNumGpuMultiProcessors() *
device.maxGpuThreadsPerMultiProcessor() / block_size;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
if (num_blocks > 1) {
// We initialize the outputs outside the reduction kernel when we can't be sure that there
// won't be a race conditions between multiple thread blocks.
const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / 1024;
const int max_blocks = device.getNumGpuMultiProcessors() *
device.maxGpuThreadsPerMultiProcessor() / 1024;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
LAUNCH_CUDA_KERNEL((ReductionInitKernel<OutputType, Index>),
LAUNCH_GPU_KERNEL((ReductionInitKernel<OutputType, Index>),
num_blocks, 1024, 0, device, reducer.initialize(),
num_preserved_vals, output);
}
LAUNCH_CUDA_KERNEL((InnerReductionKernel<num_per_thread, Self, Op, Index>),
LAUNCH_GPU_KERNEL((InnerReductionKernel<num_per_thread, Self, Op, Index>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
return false;
}
};
#ifdef EIGEN_HAS_CUDA_FP16
#ifdef EIGEN_HAS_GPU_FP16
template <typename Self, typename Op>
struct InnerReductionLauncher<Self, Op, Eigen::half, false> {
static bool run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index, typename Self::Index) {
@ -627,28 +692,28 @@ struct InnerReductionLauncher<Self, Op, Eigen::half, true> {
const int block_size = /*256*/128;
const int num_per_thread = /*128*/64;
const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / block_size;
const int max_blocks = device.getNumGpuMultiProcessors() *
device.maxGpuThreadsPerMultiProcessor() / block_size;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
if (num_blocks > 1) {
// We initialize the outputs outside the reduction kernel when we can't be sure that there
// won't be a race conditions between multiple thread blocks.
const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / 1024;
const int max_blocks = device.getNumGpuMultiProcessors() *
device.maxGpuThreadsPerMultiProcessor() / 1024;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
LAUNCH_CUDA_KERNEL((ReductionInitKernelHalfFloat<Self, Op, Index>),
LAUNCH_GPU_KERNEL((ReductionInitKernelHalfFloat<Self, Op, Index>),
1, 1, 0, device, reducer, self, num_preserved_vals, output);
}
LAUNCH_CUDA_KERNEL((InnerReductionKernelHalfFloat<num_per_thread, Self, Op, Index>),
LAUNCH_GPU_KERNEL((InnerReductionKernelHalfFloat<num_per_thread, Self, Op, Index>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
return false;
}
};
#endif // EIGEN_HAS_CUDA_FP16
#endif // EIGEN_HAS_GPU_FP16
template <typename Self, typename Op>
@ -656,16 +721,16 @@ struct InnerReducer<Self, Op, GpuDevice> {
// Unfortunately nvidia doesn't support well exotic types such as complex,
// so reduce the scope of the optimized version of the code to the simple case
// of floats and half floats.
#ifdef EIGEN_HAS_CUDA_FP16
#ifdef EIGEN_HAS_GPU_FP16
static const bool HasOptimizedImplementation = !Op::IsStateful &&
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
internal::is_same<typename Self::CoeffReturnType, double>::value ||
(internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
#else // EIGEN_HAS_CUDA_FP16
#else // EIGEN_HAS_GPU_FP16
static const bool HasOptimizedImplementation = !Op::IsStateful &&
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
internal::is_same<typename Self::CoeffReturnType, double>::value);
#endif // EIGEN_HAS_CUDA_FP16
#endif // EIGEN_HAS_GPU_FP16
template <typename OutputType>
static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
@ -723,7 +788,20 @@ struct OuterReducer<Self, Op, GpuDevice> {
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
internal::is_same<typename Self::CoeffReturnType, double>::value);
template <typename Device, typename OutputType>
static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
static
#if !defined(EIGEN_HIPCC)
// FIXME : leaving this EIGEN_DEVICE_FUNC in, results in the following runtime error
// (in the cxx11_tensor_reduction_gpu test)
//
// terminate called after throwing an instance of 'std::runtime_error'
// what(): No device code available for function: _ZN5Eigen8internal20OuterReductionKernelIL...
//
// dont know why this happens (and why is it a runtime error instead of a compile time errror)
//
// this will be fixed by HIP PR#457
EIGEN_DEVICE_FUNC
#endif
bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
assert(false && "Should only be called to reduce doubles or floats on a gpu device");
return true;
}
@ -740,33 +818,37 @@ struct OuterReducer<Self, Op, GpuDevice> {
const int block_size = 256;
const int num_per_thread = 16;
const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / block_size;
const int max_blocks = device.getNumGpuMultiProcessors() *
device.maxGpuThreadsPerMultiProcessor() / block_size;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
if (num_blocks > 1) {
// We initialize the outputs in the reduction kernel itself when we don't have to worry
// about race conditions between multiple thread blocks.
const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / 1024;
const int max_blocks = device.getNumGpuMultiProcessors() *
device.maxGpuThreadsPerMultiProcessor() / 1024;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
LAUNCH_CUDA_KERNEL((ReductionInitKernel<float, Index>),
LAUNCH_GPU_KERNEL((ReductionInitKernel<float, Index>),
num_blocks, 1024, 0, device, reducer.initialize(),
num_preserved_vals, output);
}
LAUNCH_CUDA_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>),
LAUNCH_GPU_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
return false;
}
};
#endif // defined(EIGEN_USE_GPU) && defined(__CUDACC__)
#endif // defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC)
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
#if defined(EIGEN_HIPCC)
#undef warpSize
#endif
#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H

View File

@ -278,12 +278,8 @@ struct ScanLauncher<Self, Reducer, GpuDevice> {
Index total_size = internal::array_prod(self.dimensions());
Index num_blocks = (total_size / self.size() + 63) / 64;
Index block_size = 64;
#if defined(EIGEN_HIPCC)
hipLaunchKernelGGL(HIP_KERNEL_NAME(ScanKernel<Self, Reducer>), dim3(num_blocks),
dim3(block_size), 0, self.device().stream(), self, total_size, data);
#else
LAUNCH_CUDA_KERNEL((ScanKernel<Self, Reducer>), num_blocks, block_size, 0, self.device(), self, total_size, data);
#endif
LAUNCH_GPU_KERNEL((ScanKernel<Self, Reducer>), num_blocks, block_size, 0, self.device(), self, total_size, data);
}
};
#endif // EIGEN_USE_GPU && (EIGEN_GPUCC)

View File

@ -274,24 +274,24 @@ if(CUDA_FOUND AND EIGEN_TEST_CUDA)
cuda_include_directories("${CMAKE_CURRENT_BINARY_DIR}" "${CUDA_TOOLKIT_ROOT_DIR}/include")
set(EIGEN_ADD_TEST_FILENAME_EXTENSION "cu")
ei_add_test(cxx11_tensor_complex_cuda)
ei_add_test(cxx11_tensor_complex_cwise_ops_cuda)
ei_add_test(cxx11_tensor_reduction_cuda)
ei_add_test(cxx11_tensor_argmax_cuda)
ei_add_test(cxx11_tensor_cast_float16_cuda)
ei_add_test(cxx11_tensor_scan_cuda)
ei_add_test(cxx11_tensor_complex_gpu)
ei_add_test(cxx11_tensor_complex_cwise_ops_gpu)
ei_add_test(cxx11_tensor_reduction_gpu)
ei_add_test(cxx11_tensor_argmax_gpu)
ei_add_test(cxx11_tensor_cast_float16_gpu)
ei_add_test(cxx11_tensor_scan_gpu)
# Contractions require arch 3.0 or higher
if (${EIGEN_CUDA_COMPUTE_ARCH} GREATER 29)
ei_add_test(cxx11_tensor_device)
ei_add_test(cxx11_tensor_cuda)
ei_add_test(cxx11_tensor_contract_cuda)
ei_add_test(cxx11_tensor_of_float16_cuda)
ei_add_test(cxx11_tensor_gpu)
ei_add_test(cxx11_tensor_contract_gpu)
ei_add_test(cxx11_tensor_of_float16_gpu)
endif()
# The random number generation code requires arch 3.5 or greater.
if (${EIGEN_CUDA_COMPUTE_ARCH} GREATER 34)
ei_add_test(cxx11_tensor_random_cuda)
ei_add_test(cxx11_tensor_random_gpu)
endif()
@ -318,18 +318,23 @@ if (EIGEN_TEST_HIP)
include_directories(${HIP_PATH}/include)
set(EIGEN_ADD_TEST_FILENAME_EXTENSION "cu")
#
# complex datatype is not yet supported by HIP
# so leaving out those tests for now
#
# ei_add_test(cxx11_tensor_complex_gpu)
# ei_add_test(cxx11_tensor_complex_cwise_ops_gpu)
#
ei_add_test(cxx11_tensor_reduction_gpu)
ei_add_test(cxx11_tensor_argmax_gpu)
ei_add_test(cxx11_tensor_cast_float16_gpu)
ei_add_test(cxx11_tensor_scan_gpu)
ei_add_test(cxx11_tensor_device)
# ei_add_test(cxx11_tensor_complex_hip)
# ei_add_test(cxx11_tensor_complex_cwise_ops_hip)
ei_add_test(cxx11_tensor_reduction_hip)
ei_add_test(cxx11_tensor_argmax_hip)
ei_add_test(cxx11_tensor_cast_float16_hip)
ei_add_test(cxx11_tensor_scan_hip)
ei_add_test(cxx11_tensor_device_hip)
ei_add_test(cxx11_tensor_hip)
ei_add_test(cxx11_tensor_contract_hip)
ei_add_test(cxx11_tensor_of_float16_hip)
ei_add_test(cxx11_tensor_random_hip)
ei_add_test(cxx11_tensor_gpu)
ei_add_test(cxx11_tensor_contract_gpu)
ei_add_test(cxx11_tensor_of_float16_gpu)
ei_add_test(cxx11_tensor_random_gpu)
unset(EIGEN_ADD_TEST_FILENAME_EXTENSION)

View File

@ -9,16 +9,18 @@
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_FUNC cxx11_tensor_cuda
#define EIGEN_TEST_FUNC cxx11_tensor_gpu
#define EIGEN_USE_GPU
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
#include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
using Eigen::Tensor;
template <int Layout>
void test_cuda_simple_argmax()
void test_gpu_simple_argmax()
{
Tensor<double, 3, Layout> in(Eigen::array<DenseIndex, 3>(72,53,97));
Tensor<DenseIndex, 1, Layout> out_max(Eigen::array<DenseIndex, 1>(1));
@ -34,13 +36,13 @@ void test_cuda_simple_argmax()
double* d_in;
DenseIndex* d_out_max;
DenseIndex* d_out_min;
cudaMalloc((void**)(&d_in), in_bytes);
cudaMalloc((void**)(&d_out_max), out_bytes);
cudaMalloc((void**)(&d_out_min), out_bytes);
gpuMalloc((void**)(&d_in), in_bytes);
gpuMalloc((void**)(&d_out_max), out_bytes);
gpuMalloc((void**)(&d_out_min), out_bytes);
cudaMemcpy(d_in, in.data(), in_bytes, cudaMemcpyHostToDevice);
gpuMemcpy(d_in, in.data(), in_bytes, gpuMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<double, 3, Layout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 3>(72,53,97));
@ -50,20 +52,20 @@ void test_cuda_simple_argmax()
gpu_out_max.device(gpu_device) = gpu_in.argmax();
gpu_out_min.device(gpu_device) = gpu_in.argmin();
assert(cudaMemcpyAsync(out_max.data(), d_out_max, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaMemcpyAsync(out_min.data(), d_out_min, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
assert(gpuMemcpyAsync(out_max.data(), d_out_max, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
assert(gpuMemcpyAsync(out_min.data(), d_out_min, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
VERIFY_IS_EQUAL(out_max(Eigen::array<DenseIndex, 1>(0)), 72*53*97 - 1);
VERIFY_IS_EQUAL(out_min(Eigen::array<DenseIndex, 1>(0)), 0);
cudaFree(d_in);
cudaFree(d_out_max);
cudaFree(d_out_min);
gpuFree(d_in);
gpuFree(d_out_max);
gpuFree(d_out_min);
}
template <int DataLayout>
void test_cuda_argmax_dim()
void test_gpu_argmax_dim()
{
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
std::vector<int> dims;
@ -97,12 +99,12 @@ void test_cuda_argmax_dim()
float* d_in;
DenseIndex* d_out;
cudaMalloc((void**)(&d_in), in_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
gpuMalloc((void**)(&d_in), in_bytes);
gpuMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
@ -110,8 +112,8 @@ void test_cuda_argmax_dim()
gpu_out.device(gpu_device) = gpu_in.argmax(dim);
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
VERIFY_IS_EQUAL(tensor_arg.size(),
size_t(2*3*5*7 / tensor.dimension(dim)));
@ -134,25 +136,25 @@ void test_cuda_argmax_dim()
}
}
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
gpu_out.device(gpu_device) = gpu_in.argmax(dim);
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
// Expect max to be in the last index of the reduced dimension
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
}
cudaFree(d_in);
cudaFree(d_out);
gpuFree(d_in);
gpuFree(d_out);
}
}
template <int DataLayout>
void test_cuda_argmin_dim()
void test_gpu_argmin_dim()
{
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
std::vector<int> dims;
@ -186,12 +188,12 @@ void test_cuda_argmin_dim()
float* d_in;
DenseIndex* d_out;
cudaMalloc((void**)(&d_in), in_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
gpuMalloc((void**)(&d_in), in_bytes);
gpuMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
@ -199,8 +201,8 @@ void test_cuda_argmin_dim()
gpu_out.device(gpu_device) = gpu_in.argmin(dim);
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
VERIFY_IS_EQUAL(tensor_arg.size(),
2*3*5*7 / tensor.dimension(dim));
@ -223,29 +225,29 @@ void test_cuda_argmin_dim()
}
}
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
gpu_out.device(gpu_device) = gpu_in.argmin(dim);
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
// Expect max to be in the last index of the reduced dimension
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
}
cudaFree(d_in);
cudaFree(d_out);
gpuFree(d_in);
gpuFree(d_out);
}
}
void test_cxx11_tensor_cuda()
void test_cxx11_tensor_gpu()
{
CALL_SUBTEST_1(test_cuda_simple_argmax<RowMajor>());
CALL_SUBTEST_1(test_cuda_simple_argmax<ColMajor>());
CALL_SUBTEST_2(test_cuda_argmax_dim<RowMajor>());
CALL_SUBTEST_2(test_cuda_argmax_dim<ColMajor>());
CALL_SUBTEST_3(test_cuda_argmin_dim<RowMajor>());
CALL_SUBTEST_3(test_cuda_argmin_dim<ColMajor>());
CALL_SUBTEST_1(test_gpu_simple_argmax<RowMajor>());
CALL_SUBTEST_1(test_gpu_simple_argmax<ColMajor>());
CALL_SUBTEST_2(test_gpu_argmax_dim<RowMajor>());
CALL_SUBTEST_2(test_gpu_argmax_dim<ColMajor>());
CALL_SUBTEST_3(test_gpu_argmin_dim<RowMajor>());
CALL_SUBTEST_3(test_gpu_argmin_dim<ColMajor>());
}

View File

@ -9,7 +9,7 @@
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_cast_float16_cuda
#define EIGEN_TEST_FUNC cxx11_tensor_cast_float16_gpu
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
@ -18,8 +18,8 @@
using Eigen::Tensor;
void test_cuda_conversion() {
Eigen::CudaStreamDevice stream;
void test_gpu_conversion() {
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
int num_elem = 101;
@ -72,8 +72,8 @@ void test_fallback_conversion() {
}
void test_cxx11_tensor_cast_float16_cuda()
void test_cxx11_tensor_cast_float16_gpu()
{
CALL_SUBTEST(test_cuda_conversion());
CALL_SUBTEST(test_gpu_conversion());
CALL_SUBTEST(test_fallback_conversion());
}

View File

@ -28,7 +28,7 @@ void test_cuda_complex_cwise_ops() {
cudaMalloc((void**)(&d_in2), complex_bytes);
cudaMalloc((void**)(&d_out), complex_bytes);
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<std::complex<T>, 1, 0, int>, Eigen::Aligned> gpu_in1(

View File

@ -34,7 +34,7 @@ void test_cuda_nullary() {
cudaMemcpy(d_in1, in1.data(), complex_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in2, in2.data(), complex_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<std::complex<float>, 1, 0, int>, Eigen::Aligned> gpu_in1(
@ -70,7 +70,7 @@ void test_cuda_nullary() {
static void test_cuda_sum_reductions() {
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
const int num_rows = internal::random<int>(1024, 5*1024);
@ -106,7 +106,7 @@ static void test_cuda_sum_reductions() {
static void test_cuda_mean_reductions() {
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
const int num_rows = internal::random<int>(1024, 5*1024);
@ -142,7 +142,7 @@ static void test_cuda_mean_reductions() {
static void test_cuda_product_reductions() {
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
const int num_rows = internal::random<int>(1024, 5*1024);

View File

@ -10,19 +10,20 @@
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_cuda
#define EIGEN_TEST_FUNC cxx11_tensor_gpu
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
#include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
using Eigen::Tensor;
typedef Tensor<float, 1>::DimensionPair DimPair;
template<int DataLayout>
void test_cuda_contraction(int m_size, int k_size, int n_size)
void test_gpu_contraction(int m_size, int k_size, int n_size)
{
std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
// with these dimensions, the output has 300 * 140 elements, which is
@ -45,14 +46,14 @@ void test_cuda_contraction(int m_size, int k_size, int n_size)
float* d_t_right;
float* d_t_result;
cudaMalloc((void**)(&d_t_left), t_left_bytes);
cudaMalloc((void**)(&d_t_right), t_right_bytes);
cudaMalloc((void**)(&d_t_result), t_result_bytes);
gpuMalloc((void**)(&d_t_left), t_left_bytes);
gpuMalloc((void**)(&d_t_right), t_right_bytes);
gpuMalloc((void**)(&d_t_result), t_result_bytes);
cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice);
gpuMemcpy(d_t_left, t_left.data(), t_left_bytes, gpuMemcpyHostToDevice);
gpuMemcpy(d_t_right, t_right.data(), t_right_bytes, gpuMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
@ -66,7 +67,7 @@ void test_cuda_contraction(int m_size, int k_size, int n_size)
gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims);
t_result = t_left.contract(t_right, dims);
cudaMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost);
gpuMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, gpuMemcpyDeviceToHost);
for (DenseIndex i = 0; i < t_result.size(); i++) {
if (fabs(t_result(i) - t_result_gpu(i)) < 1e-4f) {
continue;
@ -79,9 +80,9 @@ void test_cuda_contraction(int m_size, int k_size, int n_size)
assert(false);
}
cudaFree((void*)d_t_left);
cudaFree((void*)d_t_right);
cudaFree((void*)d_t_result);
gpuFree((void*)d_t_left);
gpuFree((void*)d_t_right);
gpuFree((void*)d_t_result);
}
@ -109,14 +110,14 @@ void test_scalar(int m_size, int k_size, int n_size)
float* d_t_right;
float* d_t_result;
cudaMalloc((void**)(&d_t_left), t_left_bytes);
cudaMalloc((void**)(&d_t_right), t_right_bytes);
cudaMalloc((void**)(&d_t_result), t_result_bytes);
gpuMalloc((void**)(&d_t_left), t_left_bytes);
gpuMalloc((void**)(&d_t_right), t_right_bytes);
gpuMalloc((void**)(&d_t_result), t_result_bytes);
cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice);
gpuMemcpy(d_t_left, t_left.data(), t_left_bytes, gpuMemcpyHostToDevice);
gpuMemcpy(d_t_right, t_right.data(), t_right_bytes, gpuMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
@ -129,7 +130,7 @@ void test_scalar(int m_size, int k_size, int n_size)
gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims);
t_result = t_left.contract(t_right, dims);
cudaMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost);
gpuMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, gpuMemcpyDeviceToHost);
if (fabs(t_result() - t_result_gpu()) > 1e-4f &&
!Eigen::internal::isApprox(t_result(), t_result_gpu(), 1e-4f)) {
std::cout << "mismatch detected: " << t_result()
@ -137,39 +138,39 @@ void test_scalar(int m_size, int k_size, int n_size)
assert(false);
}
cudaFree((void*)d_t_left);
cudaFree((void*)d_t_right);
cudaFree((void*)d_t_result);
gpuFree((void*)d_t_left);
gpuFree((void*)d_t_right);
gpuFree((void*)d_t_result);
}
template<int DataLayout>
void test_cuda_contraction_m() {
void test_gpu_contraction_m() {
for (int k = 32; k < 256; k++) {
test_cuda_contraction<ColMajor>(k, 128, 128);
test_cuda_contraction<RowMajor>(k, 128, 128);
test_gpu_contraction<ColMajor>(k, 128, 128);
test_gpu_contraction<RowMajor>(k, 128, 128);
}
}
template<int DataLayout>
void test_cuda_contraction_k() {
void test_gpu_contraction_k() {
for (int k = 32; k < 256; k++) {
test_cuda_contraction<ColMajor>(128, k, 128);
test_cuda_contraction<RowMajor>(128, k, 128);
test_gpu_contraction<ColMajor>(128, k, 128);
test_gpu_contraction<RowMajor>(128, k, 128);
}
}
template<int DataLayout>
void test_cuda_contraction_n() {
void test_gpu_contraction_n() {
for (int k = 32; k < 256; k++) {
test_cuda_contraction<ColMajor>(128, 128, k);
test_cuda_contraction<RowMajor>(128, 128, k);
test_gpu_contraction<ColMajor>(128, 128, k);
test_gpu_contraction<RowMajor>(128, 128, k);
}
}
template<int DataLayout>
void test_cuda_contraction_sizes() {
void test_gpu_contraction_sizes() {
int m_sizes[] = { 31, 39, 63, 64, 65,
127, 129, 255, 257 , 511,
512, 513, 1023, 1024, 1025};
@ -186,29 +187,32 @@ void test_cuda_contraction_sizes() {
for (int i = 0; i < 15; i++) {
for (int j = 0; j < 15; j++) {
for (int k = 0; k < 17; k++) {
test_cuda_contraction<DataLayout>(m_sizes[i], n_sizes[j], k_sizes[k]);
test_gpu_contraction<DataLayout>(m_sizes[i], n_sizes[j], k_sizes[k]);
}
}
}
}
void test_cxx11_tensor_cuda()
void test_cxx11_tensor_gpu()
{
CALL_SUBTEST_1(test_cuda_contraction<ColMajor>(128, 128, 128));
CALL_SUBTEST_1(test_cuda_contraction<RowMajor>(128, 128, 128));
CALL_SUBTEST_1(test_gpu_contraction<ColMajor>(128, 128, 128));
CALL_SUBTEST_1(test_gpu_contraction<RowMajor>(128, 128, 128));
CALL_SUBTEST_1(test_scalar<ColMajor>(128, 128, 128));
CALL_SUBTEST_1(test_scalar<RowMajor>(128, 128, 128));
CALL_SUBTEST_2(test_cuda_contraction_m<ColMajor>());
CALL_SUBTEST_3(test_cuda_contraction_m<RowMajor>());
CALL_SUBTEST_2(test_gpu_contraction_m<ColMajor>());
CALL_SUBTEST_3(test_gpu_contraction_m<RowMajor>());
CALL_SUBTEST_4(test_cuda_contraction_k<ColMajor>());
CALL_SUBTEST_5(test_cuda_contraction_k<RowMajor>());
CALL_SUBTEST_4(test_gpu_contraction_k<ColMajor>());
CALL_SUBTEST_5(test_gpu_contraction_k<RowMajor>());
CALL_SUBTEST_6(test_cuda_contraction_n<ColMajor>());
CALL_SUBTEST_7(test_cuda_contraction_n<RowMajor>());
CALL_SUBTEST_6(test_gpu_contraction_n<ColMajor>());
CALL_SUBTEST_7(test_gpu_contraction_n<RowMajor>());
CALL_SUBTEST_8(test_cuda_contraction_sizes<ColMajor>());
CALL_SUBTEST_9(test_cuda_contraction_sizes<RowMajor>());
#if !defined(EIGEN_USE_HIP)
// disable these subtests for HIP
CALL_SUBTEST_8(test_gpu_contraction_sizes<ColMajor>());
CALL_SUBTEST_9(test_gpu_contraction_sizes<RowMajor>());
#endif
}

View File

@ -16,6 +16,7 @@
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
#include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
using Eigen::Tensor;
using Eigen::RowMajor;
@ -66,22 +67,22 @@ struct CPUContext {
// Context for evaluation on GPU
struct GPUContext {
GPUContext(const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in1, Eigen::TensorMap<Eigen::Tensor<float, 3> >& in2, Eigen::TensorMap<Eigen::Tensor<float, 3> >& out) : in1_(in1), in2_(in2), out_(out), gpu_device_(&stream_) {
assert(cudaMalloc((void**)(&kernel_1d_), 2*sizeof(float)) == cudaSuccess);
assert(gpuMalloc((void**)(&kernel_1d_), 2*sizeof(float)) == gpuSuccess);
float kernel_1d_val[] = {3.14f, 2.7f};
assert(cudaMemcpy(kernel_1d_, kernel_1d_val, 2*sizeof(float), cudaMemcpyHostToDevice) == cudaSuccess);
assert(gpuMemcpy(kernel_1d_, kernel_1d_val, 2*sizeof(float), gpuMemcpyHostToDevice) == gpuSuccess);
assert(cudaMalloc((void**)(&kernel_2d_), 4*sizeof(float)) == cudaSuccess);
assert(gpuMalloc((void**)(&kernel_2d_), 4*sizeof(float)) == gpuSuccess);
float kernel_2d_val[] = {3.14f, 2.7f, 0.2f, 7.0f};
assert(cudaMemcpy(kernel_2d_, kernel_2d_val, 4*sizeof(float), cudaMemcpyHostToDevice) == cudaSuccess);
assert(gpuMemcpy(kernel_2d_, kernel_2d_val, 4*sizeof(float), gpuMemcpyHostToDevice) == gpuSuccess);
assert(cudaMalloc((void**)(&kernel_3d_), 8*sizeof(float)) == cudaSuccess);
assert(gpuMalloc((void**)(&kernel_3d_), 8*sizeof(float)) == gpuSuccess);
float kernel_3d_val[] = {3.14f, -1.0f, 2.7f, -0.3f, 0.2f, -0.7f, 7.0f, -0.5f};
assert(cudaMemcpy(kernel_3d_, kernel_3d_val, 8*sizeof(float), cudaMemcpyHostToDevice) == cudaSuccess);
assert(gpuMemcpy(kernel_3d_, kernel_3d_val, 8*sizeof(float), gpuMemcpyHostToDevice) == gpuSuccess);
}
~GPUContext() {
assert(cudaFree(kernel_1d_) == cudaSuccess);
assert(cudaFree(kernel_2d_) == cudaSuccess);
assert(cudaFree(kernel_3d_) == cudaSuccess);
assert(gpuFree(kernel_1d_) == gpuSuccess);
assert(gpuFree(kernel_2d_) == gpuSuccess);
assert(gpuFree(kernel_3d_) == gpuSuccess);
}
const Eigen::GpuDevice& device() const { return gpu_device_; }
@ -102,7 +103,7 @@ struct GPUContext {
float* kernel_2d_;
float* kernel_3d_;
Eigen::CudaStreamDevice stream_;
Eigen::GpuStreamDevice stream_;
Eigen::GpuDevice gpu_device_;
};
@ -281,12 +282,12 @@ void test_gpu() {
float* d_in1;
float* d_in2;
float* d_out;
cudaMalloc((void**)(&d_in1), in1_bytes);
cudaMalloc((void**)(&d_in2), in2_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
gpuMalloc((void**)(&d_in1), in1_bytes);
gpuMalloc((void**)(&d_in2), in2_bytes);
gpuMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in2, in2.data(), in2_bytes, cudaMemcpyHostToDevice);
gpuMemcpy(d_in1, in1.data(), in1_bytes, gpuMemcpyHostToDevice);
gpuMemcpy(d_in2, in2.data(), in2_bytes, gpuMemcpyHostToDevice);
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in1(d_in1, 40,50,70);
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in2(d_in2, 40,50,70);
@ -294,7 +295,7 @@ void test_gpu() {
GPUContext context(gpu_in1, gpu_in2, gpu_out);
test_contextual_eval(&context);
assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess);
assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
@ -304,7 +305,7 @@ void test_gpu() {
}
test_forced_contextual_eval(&context);
assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess);
assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
@ -314,7 +315,7 @@ void test_gpu() {
}
test_compound_assignment(&context);
assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess);
assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
@ -324,7 +325,7 @@ void test_gpu() {
}
test_contraction(&context);
assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess);
assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 40; ++j) {
const float result = out(i,j,0);
@ -339,8 +340,8 @@ void test_gpu() {
}
test_1d_convolution(&context);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, context.device().stream()) == cudaSuccess);
assert(cudaStreamSynchronize(context.device().stream()) == cudaSuccess);
assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, context.device().stream()) == gpuSuccess);
assert(gpuStreamSynchronize(context.device().stream()) == gpuSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 70; ++k) {
@ -350,8 +351,8 @@ void test_gpu() {
}
test_2d_convolution(&context);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, context.device().stream()) == cudaSuccess);
assert(cudaStreamSynchronize(context.device().stream()) == cudaSuccess);
assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, context.device().stream()) == gpuSuccess);
assert(gpuStreamSynchronize(context.device().stream()) == gpuSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 69; ++k) {
@ -363,9 +364,13 @@ void test_gpu() {
}
}
#if !defined(EIGEN_USE_HIP)
// disable this test on the HIP platform
// 3D tensor convolutions seem to hang on the HIP platform
test_3d_convolution(&context);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, context.device().stream()) == cudaSuccess);
assert(cudaStreamSynchronize(context.device().stream()) == cudaSuccess);
assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, context.device().stream()) == gpuSuccess);
assert(gpuStreamSynchronize(context.device().stream()) == gpuSuccess);
for (int i = 0; i < 39; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 69; ++k) {
@ -378,6 +383,9 @@ void test_gpu() {
}
}
}
#endif
}

File diff suppressed because it is too large Load Diff

View File

@ -9,7 +9,7 @@
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_of_float16_cuda
#define EIGEN_TEST_FUNC cxx11_tensor_of_float16_gpu
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
@ -20,8 +20,8 @@
using Eigen::Tensor;
template<typename>
void test_cuda_numext() {
Eigen::CudaStreamDevice stream;
void test_gpu_numext() {
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
int num_elem = 101;
@ -57,11 +57,11 @@ void test_cuda_numext() {
}
#ifdef EIGEN_HAS_CUDA_FP16
#ifdef EIGEN_HAS_GPU_FP16
template<typename>
void test_cuda_conversion() {
Eigen::CudaStreamDevice stream;
void test_gpu_conversion() {
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
int num_elem = 101;
@ -95,8 +95,8 @@ void test_cuda_conversion() {
}
template<typename>
void test_cuda_unary() {
Eigen::CudaStreamDevice stream;
void test_gpu_unary() {
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
int num_elem = 101;
@ -132,8 +132,8 @@ void test_cuda_unary() {
}
template<typename>
void test_cuda_elementwise() {
Eigen::CudaStreamDevice stream;
void test_gpu_elementwise() {
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
int num_elem = 101;
@ -174,8 +174,8 @@ void test_cuda_elementwise() {
}
template<typename>
void test_cuda_trancendental() {
Eigen::CudaStreamDevice stream;
void test_gpu_trancendental() {
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
int num_elem = 101;
@ -268,8 +268,8 @@ void test_cuda_trancendental() {
}
template<typename>
void test_cuda_contractions() {
Eigen::CudaStreamDevice stream;
void test_gpu_contractions() {
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
int rows = 23;
int cols = 23;
@ -319,12 +319,12 @@ void test_cuda_contractions() {
}
template<typename>
void test_cuda_reductions(int size1, int size2, int redux) {
void test_gpu_reductions(int size1, int size2, int redux) {
std::cout << "Reducing " << size1 << " by " << size2
<< " tensor along dim " << redux << std::endl;
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
int num_elem = size1*size2;
int result_size = (redux == 1 ? size1 : size2);
@ -368,20 +368,20 @@ void test_cuda_reductions(int size1, int size2, int redux) {
}
template<typename>
void test_cuda_reductions() {
test_cuda_reductions<void>(13, 13, 0);
test_cuda_reductions<void>(13, 13, 1);
void test_gpu_reductions() {
test_gpu_reductions<void>(13, 13, 0);
test_gpu_reductions<void>(13, 13, 1);
test_cuda_reductions<void>(35, 36, 0);
test_cuda_reductions<void>(35, 36, 1);
test_gpu_reductions<void>(35, 36, 0);
test_gpu_reductions<void>(35, 36, 1);
test_cuda_reductions<void>(36, 35, 0);
test_cuda_reductions<void>(36, 35, 1);
test_gpu_reductions<void>(36, 35, 0);
test_gpu_reductions<void>(36, 35, 1);
}
template<typename>
void test_cuda_full_reductions() {
Eigen::CudaStreamDevice stream;
void test_gpu_full_reductions() {
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
int size = 13;
int num_elem = size*size;
@ -429,9 +429,9 @@ void test_cuda_full_reductions() {
}
template<typename>
void test_cuda_forced_evals() {
void test_gpu_forced_evals() {
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
int num_elem = 101;
@ -479,20 +479,20 @@ void test_cuda_forced_evals() {
#endif
void test_cxx11_tensor_of_float16_cuda()
void test_cxx11_tensor_of_float16_gpu()
{
CALL_SUBTEST_1(test_cuda_numext<void>());
CALL_SUBTEST_1(test_gpu_numext<void>());
#ifdef EIGEN_HAS_CUDA_FP16
CALL_SUBTEST_1(test_cuda_conversion<void>());
CALL_SUBTEST_1(test_cuda_unary<void>());
CALL_SUBTEST_1(test_cuda_elementwise<void>());
CALL_SUBTEST_1(test_cuda_trancendental<void>());
CALL_SUBTEST_2(test_cuda_contractions<void>());
CALL_SUBTEST_3(test_cuda_reductions<void>());
CALL_SUBTEST_4(test_cuda_full_reductions<void>());
CALL_SUBTEST_5(test_cuda_forced_evals<void>());
#ifdef EIGEN_HAS_GPU_FP16
CALL_SUBTEST_1(test_gpu_conversion<void>());
CALL_SUBTEST_1(test_gpu_unary<void>());
CALL_SUBTEST_1(test_gpu_elementwise<void>());
CALL_SUBTEST_1(test_gpu_trancendental<void>());
CALL_SUBTEST_2(test_gpu_contractions<void>());
CALL_SUBTEST_3(test_gpu_reductions<void>());
CALL_SUBTEST_4(test_gpu_full_reductions<void>());
CALL_SUBTEST_5(test_gpu_forced_evals<void>());
#else
std::cout << "Half floats are not supported by this version of cuda: skipping the test" << std::endl;
std::cout << "Half floats are not supported by this version of gpu: skipping the test" << std::endl;
#endif
}

View File

@ -9,15 +9,16 @@
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_random_cuda
#define EIGEN_TEST_FUNC cxx11_tensor_random_gpu
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#include "main.h"
#include <Eigen/CXX11/Tensor>
#include <Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
void test_cuda_random_uniform()
void test_gpu_random_uniform()
{
Tensor<float, 2> out(72,97);
out.setZero();
@ -25,24 +26,24 @@ void test_cuda_random_uniform()
std::size_t out_bytes = out.size() * sizeof(float);
float* d_out;
cudaMalloc((void**)(&d_out), out_bytes);
gpuMalloc((void**)(&d_out), out_bytes);
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 2> > gpu_out(d_out, 72,97);
gpu_out.device(gpu_device) = gpu_out.random();
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
// For now we just check this code doesn't crash.
// TODO: come up with a valid test of randomness
}
void test_cuda_random_normal()
void test_gpu_random_normal()
{
Tensor<float, 2> out(72,97);
out.setZero();
@ -50,9 +51,9 @@ void test_cuda_random_normal()
std::size_t out_bytes = out.size() * sizeof(float);
float* d_out;
cudaMalloc((void**)(&d_out), out_bytes);
gpuMalloc((void**)(&d_out), out_bytes);
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 2> > gpu_out(d_out, 72,97);
@ -60,8 +61,8 @@ void test_cuda_random_normal()
Eigen::internal::NormalRandomGenerator<float> gen(true);
gpu_out.device(gpu_device) = gpu_out.random(gen);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
}
static void test_complex()
@ -77,9 +78,9 @@ static void test_complex()
}
void test_cxx11_tensor_random_cuda()
void test_cxx11_tensor_random_gpu()
{
CALL_SUBTEST(test_cuda_random_uniform());
CALL_SUBTEST(test_cuda_random_normal());
CALL_SUBTEST(test_gpu_random_uniform());
CALL_SUBTEST(test_gpu_random_normal());
CALL_SUBTEST(test_complex());
}

View File

@ -9,7 +9,7 @@
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_reduction_cuda
#define EIGEN_TEST_FUNC cxx11_tensor_reduction_gpu
#define EIGEN_USE_GPU
#include "main.h"
@ -19,7 +19,7 @@
template<typename Type, int DataLayout>
static void test_full_reductions() {
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
const int num_rows = internal::random<int>(1024, 5*1024);
@ -67,7 +67,7 @@ static void test_first_dim_reductions() {
Tensor<Type, 2, DataLayout> redux = in.sum(red_axis);
// Create device
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice dev(&stream);
// Create data(T)
@ -107,7 +107,7 @@ static void test_last_dim_reductions() {
Tensor<Type, 2, DataLayout> redux = in.sum(red_axis);
// Create device
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice dev(&stream);
// Create data
@ -134,7 +134,7 @@ static void test_last_dim_reductions() {
}
void test_cxx11_tensor_reduction_cuda() {
void test_cxx11_tensor_reduction_gpu() {
CALL_SUBTEST_1((test_full_reductions<float, ColMajor>()));
CALL_SUBTEST_1((test_full_reductions<double, ColMajor>()));
CALL_SUBTEST_2((test_full_reductions<float, RowMajor>()));

View File

@ -9,19 +9,20 @@
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_scan_cuda
#define EIGEN_TEST_FUNC cxx11_tensor_scan_gpu
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
#include <Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
using Eigen::Tensor;
typedef Tensor<float, 1>::DimensionPair DimPair;
template<int DataLayout>
void test_cuda_cumsum(int m_size, int k_size, int n_size)
void test_gpu_cumsum(int m_size, int k_size, int n_size)
{
std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
Tensor<float, 3, DataLayout> t_input(m_size, k_size, n_size);
@ -36,12 +37,12 @@ void test_cuda_cumsum(int m_size, int k_size, int n_size)
float* d_t_input;
float* d_t_result;
cudaMalloc((void**)(&d_t_input), t_input_bytes);
cudaMalloc((void**)(&d_t_result), t_result_bytes);
gpuMalloc((void**)(&d_t_input), t_input_bytes);
gpuMalloc((void**)(&d_t_result), t_result_bytes);
cudaMemcpy(d_t_input, t_input.data(), t_input_bytes, cudaMemcpyHostToDevice);
gpuMemcpy(d_t_input, t_input.data(), t_input_bytes, gpuMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> >
@ -52,7 +53,7 @@ void test_cuda_cumsum(int m_size, int k_size, int n_size)
gpu_t_result.device(gpu_device) = gpu_t_input.cumsum(1);
t_result = t_input.cumsum(1);
cudaMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost);
gpuMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, gpuMemcpyDeviceToHost);
for (DenseIndex i = 0; i < t_result.size(); i++) {
if (fabs(t_result(i) - t_result_gpu(i)) < 1e-4f) {
continue;
@ -65,13 +66,13 @@ void test_cuda_cumsum(int m_size, int k_size, int n_size)
assert(false);
}
cudaFree((void*)d_t_input);
cudaFree((void*)d_t_result);
gpuFree((void*)d_t_input);
gpuFree((void*)d_t_result);
}
void test_cxx11_tensor_scan_cuda()
void test_cxx11_tensor_scan_gpu()
{
CALL_SUBTEST_1(test_cuda_cumsum<ColMajor>(128, 128, 128));
CALL_SUBTEST_2(test_cuda_cumsum<RowMajor>(128, 128, 128));
CALL_SUBTEST_1(test_gpu_cumsum<ColMajor>(128, 128, 128));
CALL_SUBTEST_2(test_gpu_cumsum<RowMajor>(128, 128, 128));
}