Add matrix condition estimator module that implements the Higham/Hager algorithm from http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf used in LPACK. Add rcond() methods to FullPivLU and PartialPivLU.

This commit is contained in:
Rasmus Munk Larsen 2016-04-01 10:27:59 -07:00
parent 1b40abbf99
commit 1aa89fb855
5 changed files with 332 additions and 10 deletions

View File

@ -33,13 +33,13 @@
#ifdef EIGEN_EXCEPTIONS
#undef EIGEN_EXCEPTIONS
#endif
// All functions callable from CUDA code must be qualified with __device__
#define EIGEN_DEVICE_FUNC __host__ __device__
#else
#define EIGEN_DEVICE_FUNC
#endif
#if defined(__CUDA_ARCH__)
@ -282,7 +282,7 @@ inline static const char *SimdInstructionSetsInUse(void) {
// we use size_t frequently and we'll never remember to prepend it with std:: everytime just to
// ensure QNX/QCC support
using std::size_t;
// gcc 4.6.0 wants std:: for ptrdiff_t
// gcc 4.6.0 wants std:: for ptrdiff_t
using std::ptrdiff_t;
/** \defgroup Core_Module Core module
@ -422,6 +422,7 @@ using std::ptrdiff_t;
#include "src/Core/products/TriangularSolverVector.h"
#include "src/Core/BandMatrix.h"
#include "src/Core/CoreIterators.h"
#include "src/Core/ConditionEstimator.h"
#include "src/Core/BooleanRedux.h"
#include "src/Core/Select.h"

View File

@ -0,0 +1,279 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Rasmus Munk Larsen (rmlarsen@google.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CONDITIONESTIMATOR_H
#define EIGEN_CONDITIONESTIMATOR_H
namespace Eigen {
namespace internal {
template <typename Decomposition, bool IsComplex>
struct EstimateInverseL1NormImpl {};
} // namespace internal
template <typename Decomposition>
class ConditionEstimator {
public:
typedef typename Decomposition::MatrixType MatrixType;
typedef typename internal::traits<MatrixType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename internal::plain_col_type<MatrixType>::type Vector;
/** \class ConditionEstimator
* \ingroup Core_Module
*
* \brief Condition number estimator.
*
* Computing a decomposition of a dense matrix takes O(n^3) operations, while
* this method estimates the condition number quickly and reliably in O(n^2)
* operations.
*
* \returns an estimate of the reciprocal condition number
* (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given the matrix and
* its decomposition. Supports the following decompositions: FullPivLU,
* PartialPivLU.
*
* \sa FullPivLU, PartialPivLU.
*/
static RealScalar rcond(const MatrixType& matrix, const Decomposition& dec) {
eigen_assert(matrix.rows() == dec.rows());
eigen_assert(matrix.cols() == dec.cols());
eigen_assert(matrix.rows() == matrix.cols());
if (dec.rows() == 0) {
return RealScalar(1);
}
RealScalar matrix_l1_norm = matrix.cwiseAbs().colwise().sum().maxCoeff();
return rcond(MatrixL1Norm(matrix), dec);
}
/** \class ConditionEstimator
* \ingroup Core_Module
*
* \brief Condition number estimator.
*
* Computing a decomposition of a dense matrix takes O(n^3) operations, while
* this method estimates the condition number quickly and reliably in O(n^2)
* operations.
*
* \returns an estimate of the reciprocal condition number
* (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and
* its decomposition. Supports the following decompositions: FullPivLU,
* PartialPivLU.
*
* \sa FullPivLU, PartialPivLU.
*/
static RealScalar rcond(RealScalar matrix_norm, const Decomposition& dec) {
eigen_assert(dec.rows() == dec.cols());
if (dec.rows() == 0) {
return 1;
}
if (matrix_norm == 0) {
return 0;
}
const RealScalar inverse_matrix_norm = EstimateInverseL1Norm(dec);
return inverse_matrix_norm == 0 ? 0
: (1 / inverse_matrix_norm) / matrix_norm;
}
/*
* Fast algorithm for computing a lower bound estimate on the L1 norm of
* the inverse of the matrix using at most 10 calls to the solve method on its
* decomposition. This is an implementation of Algorithm 4.1 in
* http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf
* The most common usage of this algorithm is in estimating the condition
* number ||A||_1 * ||A^{-1}||_1 of a matrix A. While ||A||_1 can be computed
* directly in O(dims^2) operations (see MatrixL1Norm() below), while
* there is no cheap closed-form expression for ||A^{-1}||_1.
* Given a decompostion of A, this algorithm estimates ||A^{-1}|| in O(dims^2)
* operations. This is done by providing operators that use the decomposition
* to solve systems of the form A x = b or A^* z = c by back-substitution,
* each costing O(dims^2) operations. Since at most 10 calls are performed,
* the total cost is O(dims^2), as opposed to O(dims^3) if the inverse matrix
* B^{-1} was formed explicitly.
*/
static RealScalar EstimateInverseL1Norm(const Decomposition& dec) {
eigen_assert(dec.rows() == dec.cols());
const int n = dec.rows();
if (n == 0) {
return 0;
}
return internal::EstimateInverseL1NormImpl<
Decomposition, NumTraits<Scalar>::IsComplex>::compute(dec);
}
};
namespace internal {
// Partial specialization for real matrices.
template <typename Decomposition>
struct EstimateInverseL1NormImpl<Decomposition, 0> {
typedef typename Decomposition::MatrixType MatrixType;
typedef typename internal::traits<MatrixType>::Scalar Scalar;
typedef typename internal::plain_col_type<MatrixType>::type Vector;
// Shorthand for vector L1 norm in Eigen.
inline static Scalar VectorL1Norm(const Vector& v) {
return v.template lpNorm<1>();
}
static inline Scalar compute(const Decomposition& dec) {
const int n = dec.rows();
const Vector plus = Vector::Ones(n);
Vector v = plus / n;
v = dec.solve(v);
Scalar lower_bound = VectorL1Norm(v);
if (n == 1) {
return lower_bound;
}
// lower_bound is a lower bound on ||inv(A)||_1 = sup_v ||inv(A) v||_1 /
// ||v||_1 and is the objective maximized by the ("super-") gradient ascent
// algorithm.
// Basic idea: We know that the optimum is achieved at one of the simplices
// v = e_i, so in each iteration we follow a super-gradient to move towards
// the optimal one.
Scalar old_lower_bound = lower_bound;
const Vector minus = -Vector::Ones(n);
Vector sign_vector = (v.cwiseAbs().array() == 0).select(plus, minus);
Vector old_sign_vector = sign_vector;
int v_max_abs_index = -1;
int old_v_max_abs_index = v_max_abs_index;
for (int k = 0; k < 4; ++k) {
// argmax |inv(A)^T * sign_vector|
v = dec.transpose().solve(sign_vector);
v.cwiseAbs().maxCoeff(&v_max_abs_index);
if (v_max_abs_index == old_v_max_abs_index) {
// Break if the solution stagnated.
break;
}
// Move to the new simplex e_j, where j = v_max_abs_index.
v.setZero();
v[v_max_abs_index] = 1;
v = dec.solve(v); // v = inv(A) * e_j.
lower_bound = VectorL1Norm(v);
if (lower_bound <= old_lower_bound) {
// Break if the gradient step did not increase the lower_bound.
break;
}
sign_vector = (v.array() < 0).select(plus, minus);
if (sign_vector == old_sign_vector) {
// Break if the solution stagnated.
break;
}
old_sign_vector = sign_vector;
old_v_max_abs_index = v_max_abs_index;
old_lower_bound = lower_bound;
}
// The following calculates an independent estimate of ||A||_1 by
// multiplying
// A by a vector with entries of slowly increasing magnitude and alternating
// sign: v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1. This
// improvement
// to Hager's algorithm above is due to Higham. It was added to make the
// algorithm more robust in certain corner cases where large elements in
// the matrix might otherwise escape detection due to exact cancellation
// (especially when op and op_adjoint correspond to a sequence of
// backsubstitutions and permutations), which could cause Hager's algorithm
// to vastly underestimate ||A||_1.
Scalar alternating_sign = 1;
for (int i = 0; i < n; ++i) {
v[i] = alternating_sign * static_cast<Scalar>(1) +
(static_cast<Scalar>(i) / (static_cast<Scalar>(n - 1)));
alternating_sign = -alternating_sign;
}
v = dec.solve(v);
const Scalar alternate_lower_bound =
(2 * VectorL1Norm(v)) / (3 * static_cast<Scalar>(n));
return numext::maxi(lower_bound, alternate_lower_bound);
}
};
// Partial specialization for complex matrices.
template <typename Decomposition>
struct EstimateInverseL1NormImpl<Decomposition, 1> {
typedef typename Decomposition::MatrixType MatrixType;
typedef typename internal::traits<MatrixType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename internal::plain_col_type<MatrixType>::type Vector;
typedef typename internal::plain_col_type<MatrixType, RealScalar>::type
RealVector;
// Shorthand for vector L1 norm in Eigen.
inline static RealScalar VectorL1Norm(const Vector& v) {
return v.template lpNorm<1>();
}
static inline RealScalar compute(const Decomposition& dec) {
const int n = dec.rows();
const Vector ones = Vector::Ones(n);
Vector v = ones / n;
v = dec.solve(v);
RealScalar lower_bound = VectorL1Norm(v);
if (n == 1) {
return lower_bound;
}
// lower_bound is a lower bound on ||inv(A)||_1 = sup_v ||inv(A) v||_1 /
// ||v||_1 and is the objective maximized by the ("super-") gradient ascent
// algorithm.
// Basic idea: We know that the optimum is achieved at one of the simplices
// v = e_i, so in each iteration we follow a super-gradient to move towards
// the optimal one.
RealScalar old_lower_bound = lower_bound;
int v_max_abs_index = -1;
int old_v_max_abs_index = v_max_abs_index;
for (int k = 0; k < 4; ++k) {
// argmax |inv(A)^* * sign_vector|
RealVector abs_v = v.cwiseAbs();
const Vector psi =
(abs_v.array() == 0).select(v.cwiseQuotient(abs_v), ones);
v = dec.adjoint().solve(psi);
const RealVector z = v.real();
z.cwiseAbs().maxCoeff(&v_max_abs_index);
if (v_max_abs_index == old_v_max_abs_index) {
// Break if the solution stagnated.
break;
}
// Move to the new simplex e_j, where j = v_max_abs_index.
v.setZero();
v[v_max_abs_index] = 1;
v = dec.solve(v); // v = inv(A) * e_j.
lower_bound = VectorL1Norm(v);
if (lower_bound <= old_lower_bound) {
// Break if the gradient step did not increase the lower_bound.
break;
}
old_v_max_abs_index = v_max_abs_index;
old_lower_bound = lower_bound;
}
// The following calculates an independent estimate of ||A||_1 by
// multiplying
// A by a vector with entries of slowly increasing magnitude and alternating
// sign: v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1. This
// improvement
// to Hager's algorithm above is due to Higham. It was added to make the
// algorithm more robust in certain corner cases where large elements in
// the matrix might otherwise escape detection due to exact cancellation
// (especially when op and op_adjoint correspond to a sequence of
// backsubstitutions and permutations), which could cause Hager's algorithm
// to vastly underestimate ||A||_1.
RealScalar alternating_sign = 1;
for (int i = 0; i < n; ++i) {
v[i] = alternating_sign * static_cast<RealScalar>(1) +
(static_cast<RealScalar>(i) / (static_cast<RealScalar>(n - 1)));
alternating_sign = -alternating_sign;
}
v = dec.solve(v);
const RealScalar alternate_lower_bound =
(2 * VectorL1Norm(v)) / (3 * static_cast<RealScalar>(n));
return numext::maxi(lower_bound, alternate_lower_bound);
}
};
} // namespace internal
} // namespace Eigen
#endif

View File

@ -231,6 +231,15 @@ template<typename _MatrixType> class FullPivLU
return Solve<FullPivLU, Rhs>(*this, b.derived());
}
/** \returns an estimate of the reciprocal condition number of the matrix of which *this is
the LU decomposition.
*/
inline RealScalar rcond() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return ConditionEstimator<FullPivLU<_MatrixType> >::rcond(m_l1_norm, *this);
}
/** \returns the determinant of the matrix of which
* *this is the LU decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
@ -410,6 +419,7 @@ template<typename _MatrixType> class FullPivLU
IntColVectorType m_rowsTranspositions;
IntRowVectorType m_colsTranspositions;
Index m_det_pq, m_nonzero_pivots;
RealScalar m_l1_norm;
RealScalar m_maxpivot, m_prescribedThreshold;
bool m_isInitialized, m_usePrescribedThreshold;
};
@ -455,11 +465,12 @@ FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const EigenBase<InputType>
// the permutations are stored as int indices, so just to be sure:
eigen_assert(matrix.rows()<=NumTraits<int>::highest() && matrix.cols()<=NumTraits<int>::highest());
m_isInitialized = true;
m_lu = matrix.derived();
m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
computeInPlace();
m_isInitialized = true;
return *this;
}

View File

@ -76,7 +76,6 @@ template<typename _MatrixType> class PartialPivLU
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
typedef typename MatrixType::PlainObject PlainObject;
/**
* \brief Default Constructor.
*
@ -152,6 +151,15 @@ template<typename _MatrixType> class PartialPivLU
return Solve<PartialPivLU, Rhs>(*this, b.derived());
}
/** \returns an estimate of the reciprocal condition number of the matrix of which *this is
the LU decomposition.
*/
inline RealScalar rcond() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return ConditionEstimator<PartialPivLU<_MatrixType> >::rcond(m_l1_norm, *this);
}
/** \returns the inverse of the matrix of which *this is the LU decomposition.
*
* \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
@ -178,7 +186,7 @@ template<typename _MatrixType> class PartialPivLU
*
* \sa MatrixBase::determinant()
*/
typename internal::traits<MatrixType>::Scalar determinant() const;
Scalar determinant() const;
MatrixType reconstructedMatrix() const;
@ -247,6 +255,7 @@ template<typename _MatrixType> class PartialPivLU
PermutationType m_p;
TranspositionType m_rowsTranspositions;
Index m_det_p;
RealScalar m_l1_norm;
bool m_isInitialized;
};
@ -256,6 +265,7 @@ PartialPivLU<MatrixType>::PartialPivLU()
m_p(),
m_rowsTranspositions(),
m_det_p(0),
m_l1_norm(0),
m_isInitialized(false)
{
}
@ -266,6 +276,7 @@ PartialPivLU<MatrixType>::PartialPivLU(Index size)
m_p(size),
m_rowsTranspositions(size),
m_det_p(0),
m_l1_norm(0),
m_isInitialized(false)
{
}
@ -277,6 +288,7 @@ PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix)
m_p(matrix.rows()),
m_rowsTranspositions(matrix.rows()),
m_det_p(0),
m_l1_norm(0),
m_isInitialized(false)
{
compute(matrix.derived());
@ -467,6 +479,7 @@ PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const EigenBase<Inpu
eigen_assert(matrix.rows()<NumTraits<int>::highest());
m_lu = matrix.derived();
m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
const Index size = matrix.rows();
@ -484,7 +497,7 @@ PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const EigenBase<Inpu
}
template<typename MatrixType>
typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return Scalar(m_det_p) * m_lu.diagonal().prod();

View File

@ -11,6 +11,11 @@
#include <Eigen/LU>
using namespace std;
template<typename MatrixType>
typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
return m.cwiseAbs().colwise().sum().maxCoeff();
}
template<typename MatrixType> void lu_non_invertible()
{
typedef typename MatrixType::Index Index;
@ -143,7 +148,13 @@ template<typename MatrixType> void lu_invertible()
m3 = MatrixType::Random(size,size);
m2 = lu.solve(m3);
VERIFY_IS_APPROX(m3, m1*m2);
VERIFY_IS_APPROX(m2, lu.inverse()*m3);
MatrixType m1_inverse = lu.inverse();
VERIFY_IS_APPROX(m2, m1_inverse*m3);
// Test condition number estimation.
RealScalar rcond = RealScalar(1) / matrix_l1_norm(m1) / matrix_l1_norm(m1_inverse);
// Verify that the estimate is within a factor of 10 of the truth.
VERIFY(lu.rcond() > rcond / 10 && lu.rcond() < rcond * 10);
// test solve with transposed
lu.template _solve_impl_transposed<false>(m3, m2);
@ -170,6 +181,7 @@ template<typename MatrixType> void lu_partial_piv()
PartialPivLU.h
*/
typedef typename MatrixType::Index Index;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
Index size = internal::random<Index>(1,4);
MatrixType m1(size, size), m2(size, size), m3(size, size);
@ -181,7 +193,13 @@ template<typename MatrixType> void lu_partial_piv()
m3 = MatrixType::Random(size,size);
m2 = plu.solve(m3);
VERIFY_IS_APPROX(m3, m1*m2);
VERIFY_IS_APPROX(m2, plu.inverse()*m3);
MatrixType m1_inverse = plu.inverse();
VERIFY_IS_APPROX(m2, m1_inverse*m3);
// Test condition number estimation.
RealScalar rcond = RealScalar(1) / matrix_l1_norm(m1) / matrix_l1_norm(m1_inverse);
// Verify that the estimate is within a factor of 10 of the truth.
VERIFY(plu.rcond() > rcond / 10 && plu.rcond() < rcond * 10);
// test solve with transposed
plu.template _solve_impl_transposed<false>(m3, m2);