mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-11-27 06:30:28 +08:00
finally directly calling the low-level products is faster
This commit is contained in:
parent
8885d56928
commit
1a1b2e9f27
@ -245,5 +245,15 @@ inline void ei_palign(PacketType& first, const PacketType& second)
|
||||
ei_palign_impl<Offset,PacketType>::run(first,second);
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Fast complex products (GCC generates a function call which is very slow)
|
||||
***************************************************************************/
|
||||
|
||||
template<> inline std::complex<float> ei_pmul(const std::complex<float>& a, const std::complex<float>& b)
|
||||
{ return std::complex<float>(ei_real(a)*ei_real(b) - ei_imag(a)*ei_imag(b), ei_imag(a)*ei_real(b) + ei_real(a)*ei_imag(b)); }
|
||||
|
||||
template<> inline std::complex<double> ei_pmul(const std::complex<double>& a, const std::complex<double>& b)
|
||||
{ return std::complex<double>(ei_real(a)*ei_real(b) - ei_imag(a)*ei_imag(b), ei_imag(a)*ei_real(b) + ei_real(a)*ei_imag(b)); }
|
||||
|
||||
#endif // EIGEN_GENERIC_PACKET_MATH_H
|
||||
|
||||
|
@ -281,8 +281,7 @@ template<typename LhsNested, typename RhsNested, int ProductMode> class Product
|
||||
*/
|
||||
EIGEN_STRONG_INLINE bool _useCacheFriendlyProduct() const
|
||||
{
|
||||
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 16
|
||||
// TODO do something more accurate here
|
||||
// TODO do something more accurate here (especially for mat-vec products)
|
||||
return m_lhs.cols()>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
&& ( rows()>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
|| cols()>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD);
|
||||
|
@ -27,7 +27,6 @@
|
||||
|
||||
template<typename Lhs, typename Rhs,
|
||||
int Mode, // Upper/Lower | UnitDiag
|
||||
// bool ConjugateLhs, bool ConjugateRhs,
|
||||
int UpLo = (Mode & LowerTriangularBit)
|
||||
? LowerTriangular
|
||||
: (Mode & UpperTriangularBit)
|
||||
@ -38,15 +37,20 @@ template<typename Lhs, typename Rhs,
|
||||
struct ei_triangular_solver_selector;
|
||||
|
||||
// forward substitution, row-major
|
||||
template<typename Lhs, typename Rhs, int Mode, /*bool ConjugateLhs, bool ConjugateRhs,*/ int UpLo>
|
||||
struct ei_triangular_solver_selector<Lhs,Rhs,Mode,/*ConjugateLhs,ConjugateRhs,*/UpLo,RowMajor>
|
||||
template<typename Lhs, typename Rhs, int Mode, int UpLo>
|
||||
struct ei_triangular_solver_selector<Lhs,Rhs,Mode,UpLo,RowMajor>
|
||||
{
|
||||
typedef typename Rhs::Scalar Scalar;
|
||||
typedef ei_product_factor_traits<Lhs> LhsProductTraits;
|
||||
typedef typename LhsProductTraits::ActualXprType ActualLhsType;
|
||||
enum {
|
||||
IsLowerTriangular = (UpLo==LowerTriangular)
|
||||
};
|
||||
static void run(const Lhs& lhs, Rhs& other)
|
||||
{//std::cerr << "row maj " << ConjugateLhs << " , " << ConjugateRhs
|
||||
// << " " << typeid(Lhs).name() << "\n";
|
||||
static const int PanelWidth = 40; // TODO make this a user definable constant
|
||||
static const bool IsLowerTriangular = (UpLo==LowerTriangular);
|
||||
{//std::cerr << "row maj " << LhsProductTraits::NeedToConjugate << "\n";
|
||||
static const int PanelWidth = EIGEN_TUNE_TRSV_PANEL_WIDTH;
|
||||
const ActualLhsType& actualLhs = LhsProductTraits::extract(lhs);
|
||||
|
||||
const int size = lhs.cols();
|
||||
for(int c=0 ; c<other.cols() ; ++c)
|
||||
{
|
||||
@ -61,15 +65,12 @@ struct ei_triangular_solver_selector<Lhs,Rhs,Mode,/*ConjugateLhs,ConjugateRhs,*/
|
||||
{
|
||||
int startRow = IsLowerTriangular ? pi : pi-actualPanelWidth;
|
||||
int startCol = IsLowerTriangular ? 0 : pi;
|
||||
// Block<Rhs,Dynamic,1> target(other,startRow,c,actualPanelWidth,1);
|
||||
|
||||
// ei_cache_friendly_product_rowmajor_times_vector<ConjugateLhs,ConjugateRhs>(
|
||||
// &(lhs.const_cast_derived().coeffRef(startRow,startCol)), lhs.stride(),
|
||||
// &(other.coeffRef(startCol, c)), r,
|
||||
// target, Scalar(-1));
|
||||
other.col(c).segment(startRow,actualPanelWidth) -=
|
||||
lhs.block(startRow,startCol,actualPanelWidth,r)
|
||||
* other.col(c).segment(startCol,r);
|
||||
Block<Rhs,Dynamic,1> target(other,startRow,c,actualPanelWidth,1);
|
||||
|
||||
ei_cache_friendly_product_rowmajor_times_vector<LhsProductTraits::NeedToConjugate,false>(
|
||||
&(actualLhs.const_cast_derived().coeffRef(startRow,startCol)), actualLhs.stride(),
|
||||
&(other.coeffRef(startCol, c)), r,
|
||||
target, Scalar(-1));
|
||||
}
|
||||
|
||||
for(int k=0; k<actualPanelWidth; ++k)
|
||||
@ -83,7 +84,6 @@ struct ei_triangular_solver_selector<Lhs,Rhs,Mode,/*ConjugateLhs,ConjugateRhs,*/
|
||||
if(!(Mode & UnitDiagBit))
|
||||
other.coeffRef(i,c) /= lhs.coeff(i,i);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -94,17 +94,23 @@ struct ei_triangular_solver_selector<Lhs,Rhs,Mode,/*ConjugateLhs,ConjugateRhs,*/
|
||||
// - inv(LowerTriangular,UnitDiag,ColMajor) * Column vector
|
||||
// - inv(UpperTriangular, ColMajor) * Column vector
|
||||
// - inv(UpperTriangular,UnitDiag,ColMajor) * Column vector
|
||||
template<typename Lhs, typename Rhs, int Mode, /*bool ConjugateLhs, bool ConjugateRhs,*/ int UpLo>
|
||||
struct ei_triangular_solver_selector<Lhs,Rhs,Mode,/*ConjugateLhs,ConjugateRhs,*/UpLo,ColMajor>
|
||||
template<typename Lhs, typename Rhs, int Mode, int UpLo>
|
||||
struct ei_triangular_solver_selector<Lhs,Rhs,Mode,UpLo,ColMajor>
|
||||
{
|
||||
typedef typename Rhs::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type Packet;
|
||||
enum { PacketSize = ei_packet_traits<Scalar>::size };
|
||||
typedef ei_product_factor_traits<Lhs> LhsProductTraits;
|
||||
typedef typename LhsProductTraits::ActualXprType ActualLhsType;
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<Scalar>::size,
|
||||
IsLowerTriangular = (UpLo==LowerTriangular)
|
||||
};
|
||||
|
||||
static void run(const Lhs& lhs, Rhs& other)
|
||||
{//std::cerr << "col maj " << ConjugateLhs << " , " << ConjugateRhs << "\n";
|
||||
static const int PanelWidth = 4; // TODO make this a user definable constant
|
||||
static const bool IsLowerTriangular = (UpLo==LowerTriangular);
|
||||
{//std::cerr << "col maj " << LhsProductTraits::NeedToConjugate << "\n";
|
||||
static const int PanelWidth = EIGEN_TUNE_TRSV_PANEL_WIDTH;
|
||||
const ActualLhsType& actualLhs = LhsProductTraits::extract(lhs);
|
||||
|
||||
const int size = lhs.cols();
|
||||
for(int c=0 ; c<other.cols() ; ++c)
|
||||
{
|
||||
@ -133,16 +139,15 @@ struct ei_triangular_solver_selector<Lhs,Rhs,Mode,/*ConjugateLhs,ConjugateRhs,*/
|
||||
int r = IsLowerTriangular ? size - endBlock : startBlock; // remaining size
|
||||
if (r > 0)
|
||||
{
|
||||
// ei_cache_friendly_product_colmajor_times_vector<ConjugateLhs,ConjugateRhs>(
|
||||
// r,
|
||||
// &(lhs.const_cast_derived().coeffRef(endBlock,startBlock)), lhs.stride(),
|
||||
// other.col(c).segment(startBlock, actualPanelWidth),
|
||||
// &(other.coeffRef(endBlock, c)),
|
||||
// Scalar(-1));
|
||||
|
||||
other.col(c).segment(endBlock,r) -=
|
||||
lhs.block(endBlock,startBlock,r,actualPanelWidth)
|
||||
* other.col(c).segment(startBlock,actualPanelWidth);
|
||||
// let's directly call this function because:
|
||||
// 1 - it is faster to compile
|
||||
// 2 - it is slighlty faster at runtime
|
||||
ei_cache_friendly_product_colmajor_times_vector<LhsProductTraits::NeedToConjugate,false>(
|
||||
r,
|
||||
&(actualLhs.const_cast_derived().coeffRef(endBlock,startBlock)), actualLhs.stride(),
|
||||
other.col(c).segment(startBlock, actualPanelWidth),
|
||||
&(other.coeffRef(endBlock, c)),
|
||||
Scalar(-1));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -168,21 +173,13 @@ void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<RhsDerived>&
|
||||
ei_assert(!(Mode & ZeroDiagBit));
|
||||
ei_assert(Mode & (UpperTriangularBit|LowerTriangularBit));
|
||||
|
||||
// typedef ei_product_factor_traits<MatrixType> LhsProductTraits;
|
||||
// typedef ei_product_factor_traits<RhsDerived> RhsProductTraits;
|
||||
// typedef typename LhsProductTraits::ActualXprType ActualLhsType;
|
||||
// typedef typename RhsProductTraits::ActualXprType ActualRhsType;
|
||||
// const ActualLhsType& actualLhs = LhsProductTraits::extract(_expression());
|
||||
// ActualRhsType& actualRhs = const_cast<ActualRhsType&>(RhsProductTraits::extract(rhs));
|
||||
|
||||
enum { copy = ei_traits<RhsDerived>::Flags & RowMajorBit };
|
||||
// std::cerr << typeid(MatrixType).name() << "\n";
|
||||
typedef typename ei_meta_if<copy,
|
||||
typename ei_plain_matrix_type_column_major<RhsDerived>::type, RhsDerived&>::ret RhsCopy;
|
||||
RhsCopy rhsCopy(rhs);
|
||||
|
||||
ei_triangular_solver_selector<MatrixType, typename ei_unref<RhsCopy>::type,
|
||||
Mode/*, LhsProductTraits::NeedToConjugate,RhsProductTraits::NeedToConjugate*/>::run(_expression(), rhsCopy);
|
||||
Mode>::run(_expression(), rhsCopy);
|
||||
|
||||
if (copy)
|
||||
rhs = rhsCopy;
|
||||
|
@ -26,7 +26,7 @@
|
||||
#define EIGEN_PACKET_MATH_SSE_H
|
||||
|
||||
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 16
|
||||
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
|
||||
#endif
|
||||
|
||||
typedef __m128 Packet4f;
|
||||
|
@ -47,8 +47,7 @@ template<> struct ei_conj_helper<false,true>
|
||||
{ return c + pmul(x,y); }
|
||||
|
||||
template<typename T> std::complex<T> pmul(const std::complex<T>& x, const std::complex<T>& y) const
|
||||
//{ return std::complex<T>(ei_real(x)*ei_real(y) + ei_imag(x)*ei_imag(y), ei_imag(x)*ei_real(y) - ei_real(x)*ei_imag(y)); }
|
||||
{ return x * ei_conj(y); }
|
||||
{ return std::complex<T>(ei_real(x)*ei_real(y) + ei_imag(x)*ei_imag(y), ei_imag(x)*ei_real(y) - ei_real(x)*ei_imag(y)); }
|
||||
};
|
||||
|
||||
template<> struct ei_conj_helper<true,false>
|
||||
@ -68,8 +67,7 @@ template<> struct ei_conj_helper<true,true>
|
||||
{ return c + pmul(x,y); }
|
||||
|
||||
template<typename T> std::complex<T> pmul(const std::complex<T>& x, const std::complex<T>& y) const
|
||||
// { return std::complex<T>(ei_real(x)*ei_real(y) - ei_imag(x)*ei_imag(y), - ei_real(x)*ei_imag(y) - ei_imag(x)*ei_real(y)); }
|
||||
{ return ei_conj(x) * ei_conj(y); }
|
||||
{ return std::complex<T>(ei_real(x)*ei_real(y) - ei_imag(x)*ei_imag(y), - ei_real(x)*ei_imag(y) - ei_imag(x)*ei_real(y)); }
|
||||
};
|
||||
|
||||
#ifndef EIGEN_EXTERN_INSTANTIATIONS
|
||||
|
@ -25,14 +25,6 @@
|
||||
#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
|
||||
#define EIGEN_SELFADJOINT_MATRIX_VECTOR_H
|
||||
|
||||
template<bool Conjugate> struct ei_conj_if {
|
||||
template<typename Scalar> Scalar operator() (const Scalar& x) const { return ei_conj(x); }
|
||||
};
|
||||
|
||||
template<> struct ei_conj_if<false> {
|
||||
template<typename Scalar> Scalar& operator() (Scalar& x) const { return x; }
|
||||
};
|
||||
|
||||
/* Optimized col-major selfadjoint matrix * vector product:
|
||||
* This algorithm processes 2 columns at onces that allows to both reduce
|
||||
* the number of load/stores of the result by a factor 2 and to reduce
|
||||
|
@ -94,6 +94,13 @@
|
||||
#define EIGEN_TUNE_FOR_CPU_CACHE_SIZE (sizeof(float)*256*256)
|
||||
#endif
|
||||
|
||||
/** Defines the maximal width of the blocks used in the triangular solver
|
||||
* for vectors (level 2 blas xTRSV). The default is 8.
|
||||
*/
|
||||
#ifndef EIGEN_TUNE_TRSV_PANEL_WIDTH
|
||||
#define EIGEN_TUNE_TRSV_PANEL_WIDTH 8
|
||||
#endif
|
||||
|
||||
/** Allows to disable some optimizations which might affect the accuracy of the result.
|
||||
* Such optimization are enabled by default, and set EIGEN_FAST_MATH to 0 to disable them.
|
||||
* They currently include:
|
||||
|
@ -198,4 +198,16 @@ template<typename T> struct ei_is_diagonal<DiagonalWrapper<T> >
|
||||
template<typename T, int S> struct ei_is_diagonal<DiagonalMatrix<T,S> >
|
||||
{ enum { ret = true }; };
|
||||
|
||||
template<bool Conjugate> struct ei_conj_if;
|
||||
|
||||
template<> struct ei_conj_if<true> {
|
||||
template<typename T>
|
||||
inline T operator()(const T& x) { return ei_conj(x); }
|
||||
};
|
||||
|
||||
template<> struct ei_conj_if<false> {
|
||||
template<typename T>
|
||||
inline const T& operator()(const T& x) { return x; }
|
||||
};
|
||||
|
||||
#endif // EIGEN_META_H
|
||||
|
@ -142,18 +142,18 @@ template<typename MatrixType> void cholesky_verify_assert()
|
||||
void test_cholesky()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
// CALL_SUBTEST( cholesky(Matrix<double,1,1>()) );
|
||||
// CALL_SUBTEST( cholesky(MatrixXd(1,1)) );
|
||||
// CALL_SUBTEST( cholesky(Matrix2d()) );
|
||||
// CALL_SUBTEST( cholesky(Matrix3f()) );
|
||||
CALL_SUBTEST( cholesky(Matrix<double,1,1>()) );
|
||||
CALL_SUBTEST( cholesky(MatrixXd(1,1)) );
|
||||
CALL_SUBTEST( cholesky(Matrix2d()) );
|
||||
CALL_SUBTEST( cholesky(Matrix3f()) );
|
||||
CALL_SUBTEST( cholesky(Matrix4d()) );
|
||||
CALL_SUBTEST( cholesky(MatrixXcd(7,7)) );
|
||||
// CALL_SUBTEST( cholesky(MatrixXd(17,17)) );
|
||||
// CALL_SUBTEST( cholesky(MatrixXf(200,200)) );
|
||||
CALL_SUBTEST( cholesky(MatrixXd(17,17)) );
|
||||
CALL_SUBTEST( cholesky(MatrixXf(200,200)) );
|
||||
}
|
||||
|
||||
// CALL_SUBTEST( cholesky_verify_assert<Matrix3f>() );
|
||||
// CALL_SUBTEST( cholesky_verify_assert<Matrix3d>() );
|
||||
// CALL_SUBTEST( cholesky_verify_assert<MatrixXf>() );
|
||||
// CALL_SUBTEST( cholesky_verify_assert<MatrixXd>() );
|
||||
CALL_SUBTEST( cholesky_verify_assert<Matrix3f>() );
|
||||
CALL_SUBTEST( cholesky_verify_assert<Matrix3d>() );
|
||||
CALL_SUBTEST( cholesky_verify_assert<MatrixXf>() );
|
||||
CALL_SUBTEST( cholesky_verify_assert<MatrixXd>() );
|
||||
}
|
||||
|
@ -28,6 +28,7 @@
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <typeinfo>
|
||||
|
||||
#ifndef EIGEN_TEST_FUNC
|
||||
#error EIGEN_TEST_FUNC must be defined
|
||||
|
@ -47,8 +47,6 @@ template<typename MatrixType> void product_extra(const MatrixType& m)
|
||||
square2 = MatrixType::Random(cols, cols),
|
||||
res2 = MatrixType::Random(cols, cols);
|
||||
RowVectorType v1 = RowVectorType::Random(rows), vrres(rows);
|
||||
// v2 = RowVectorType::Random(rows),
|
||||
// vzero = RowVectorType::Zero(rows);
|
||||
ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
|
||||
OtherMajorMatrixType tm1 = m1;
|
||||
|
||||
@ -56,14 +54,14 @@ template<typename MatrixType> void product_extra(const MatrixType& m)
|
||||
s2 = ei_random<Scalar>(),
|
||||
s3 = ei_random<Scalar>();
|
||||
|
||||
int c0 = ei_random<int>(0,cols/2-1),
|
||||
c1 = ei_random<int>(cols/2,cols),
|
||||
r0 = ei_random<int>(0,rows/2-1),
|
||||
r1 = ei_random<int>(rows/2,rows);
|
||||
// int c0 = ei_random<int>(0,cols/2-1),
|
||||
// c1 = ei_random<int>(cols/2,cols),
|
||||
// r0 = ei_random<int>(0,rows/2-1),
|
||||
// r1 = ei_random<int>(rows/2,rows);
|
||||
|
||||
// all the expressions in this test should be compiled as a single matrix product
|
||||
// TODO: add internal checks to verify that
|
||||
/*
|
||||
|
||||
VERIFY_IS_APPROX(m1 * m2.adjoint(), m1 * m2.adjoint().eval());
|
||||
VERIFY_IS_APPROX(m1.adjoint() * square.adjoint(), m1.adjoint().eval() * square.adjoint().eval());
|
||||
VERIFY_IS_APPROX(m1.adjoint() * m2, m1.adjoint().eval() * m2);
|
||||
@ -111,49 +109,14 @@ template<typename MatrixType> void product_extra(const MatrixType& m)
|
||||
|
||||
VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
|
||||
(-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
|
||||
*/
|
||||
// test with sub matrices
|
||||
m2 = m1;
|
||||
m3 = m1;
|
||||
|
||||
// std::cerr << (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).rows() << " " << (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).cols() << " == " << vrres.segment(r0,r1-r0).rows() << " " << vrres.segment(r0,r1-r0).cols() << "\n";
|
||||
// m2.col(c0).segment(0,r1-r0) += (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).lazy();
|
||||
// m3.col(c0).segment(0,r1-r0) += (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).eval();
|
||||
Matrix<Scalar,Dynamic,1> a = m2.col(c0), b = a;
|
||||
a.segment(5,r1-r0) += (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).lazy();
|
||||
b.segment(5,r1-r0) += (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).eval();
|
||||
|
||||
// m2.col(c0).segment(0,r1-r0) += (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).lazy();
|
||||
// m3.col(c0).segment(0,r1-r0) += (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).eval();
|
||||
// if (!m2.isApprox(m3))
|
||||
std::cerr << (a-b).cwise().abs().maxCoeff() << "\n";
|
||||
VERIFY_IS_APPROX(a,b);
|
||||
// VERIFY_IS_APPROX( vrres.segment(0,r1-r0).transpose().eval(),
|
||||
// v1.segment(0,r1-r0).transpose() + m1.block(r0,c0, r1-r0, c1-c0).eval() * (vc2.segment(c0,c1-c0)).eval());
|
||||
}
|
||||
|
||||
void test_product_extra()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
int rows = ei_random<int>(2,10);
|
||||
int cols = ei_random<int>(2,10);
|
||||
int c0 = ei_random<int>(0,cols/2-1),
|
||||
c1 = ei_random<int>(cols/2,cols),
|
||||
r0 = ei_random<int>(0,rows/2-1),
|
||||
r1 = ei_random<int>(rows/2,rows);
|
||||
|
||||
MatrixXf m1 = MatrixXf::Random(rows,cols), m2 = m1;
|
||||
Matrix<float,Dynamic,1> a = m2.col(c0), b = a;
|
||||
Matrix<float,Dynamic,1> vc2 = Matrix<float,Dynamic,1>::Random(cols);
|
||||
if (1+r1-r0<rows) {
|
||||
a.segment(1,r1-r0) += (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).lazy();
|
||||
b.segment(1,r1-r0) += (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).eval();
|
||||
VERIFY_IS_APPROX(a,b);
|
||||
}
|
||||
// CALL_SUBTEST( product_extra(MatrixXf(ei_random<int>(1,320), ei_random<int>(1,320))) );
|
||||
// CALL_SUBTEST( product_extra(MatrixXd(ei_random<int>(1,320), ei_random<int>(1,320))) );
|
||||
// CALL_SUBTEST( product(MatrixXi(ei_random<int>(1,320), ei_random<int>(1,320))) );
|
||||
// CALL_SUBTEST( product_extra(MatrixXcf(ei_random<int>(50,50), ei_random<int>(50,50))) );
|
||||
// CALL_SUBTEST( product(Matrix<float,Dynamic,Dynamic,RowMajor>(ei_random<int>(1,320), ei_random<int>(1,320))) );
|
||||
CALL_SUBTEST( product_extra(MatrixXf(ei_random<int>(1,320), ei_random<int>(1,320))) );
|
||||
CALL_SUBTEST( product_extra(MatrixXcf(ei_random<int>(50,50), ei_random<int>(50,50))) );
|
||||
CALL_SUBTEST( product_extra(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(ei_random<int>(1,50), ei_random<int>(1,50))) );
|
||||
}
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
// This file is triangularView of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@gmail.com>
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
@ -81,44 +81,35 @@ template<typename MatrixType> void triangular(const MatrixType& m)
|
||||
m1.template triangularView<Eigen::LowerTriangular>() = (m2.transpose() * m2).lazy();
|
||||
VERIFY_IS_APPROX(m3.template triangularView<Eigen::LowerTriangular>().toDense(), m1);
|
||||
|
||||
// VERIFY_IS_APPROX(m3.template triangularView<DiagonalBits>(), m3.diagonal().asDiagonal());
|
||||
|
||||
m1 = MatrixType::Random(rows, cols);
|
||||
for (int i=0; i<rows; ++i)
|
||||
while (ei_abs2(m1(i,i))<1e-3) m1(i,i) = ei_random<Scalar>();
|
||||
|
||||
Transpose<MatrixType> trm4(m4);
|
||||
// test back and forward subsitution
|
||||
m3 = m1.template triangularView<Eigen::UpperTriangular>();
|
||||
VERIFY(m2.isApprox(m3.adjoint() * (m1.adjoint().template triangularView<Eigen::LowerTriangular>().solve(m2)), largerEps));
|
||||
m3 = m1.template triangularView<Eigen::LowerTriangular>();
|
||||
// VERIFY(m3.template triangularView<Eigen::LowerTriangular>().solve(m3).cwise().abs().isIdentity(test_precision<RealScalar>()));
|
||||
// VERIFY(m3.transpose().template triangularView<Eigen::UpperTriangular>()
|
||||
// .solve(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>()));
|
||||
VERIFY(m2.isApprox(m3.transpose() * (m1.transpose().template triangularView<Eigen::UpperTriangular>().solve(m2)), largerEps));
|
||||
m3 = m1.template triangularView<Eigen::UpperTriangular>();
|
||||
VERIFY(m2.isApprox(m3 * (m1.template triangularView<Eigen::UpperTriangular>().solve(m2)), largerEps));
|
||||
m3 = m1.template triangularView<Eigen::LowerTriangular>();
|
||||
VERIFY(m2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView<Eigen::LowerTriangular>().solve(m2)), largerEps));
|
||||
|
||||
// check M * inv(L) using in place API
|
||||
m4 = m3;
|
||||
m3.transpose().template triangularView<Eigen::UpperTriangular>().solveInPlace(trm4);
|
||||
// VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>()));
|
||||
VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>()));
|
||||
|
||||
// m3 = m1.template triangularView<Eigen::UpperTriangular>();
|
||||
// VERIFY(m3.template triangularView<Eigen::UpperTriangular>().solve(m3).cwise().abs().isIdentity(test_precision<RealScalar>()));
|
||||
// VERIFY(m3.transpose().template triangularView<Eigen::LowerTriangular>()
|
||||
// .solve(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>()));
|
||||
// // check M * inv(U) using in place API
|
||||
// check M * inv(U) using in place API
|
||||
m3 = m1.template triangularView<Eigen::UpperTriangular>();
|
||||
m4 = m3;
|
||||
m3.transpose().template triangularView<Eigen::LowerTriangular>().solveInPlace(trm4);
|
||||
VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>()));
|
||||
|
||||
// m3 = m1.template triangularView<Eigen::UpperTriangular>();
|
||||
// VERIFY(m2.isApprox(m3 * (m3.template triangularView<Eigen::UpperTriangular>().solve(m2)), largerEps));
|
||||
// m3 = m1.template triangularView<Eigen::LowerTriangular>();
|
||||
|
||||
// std::cerr << (m2 -
|
||||
// (m3 * (m3.template triangularView<Eigen::LowerTriangular>().solve(m2)))).cwise().abs() /*.maxCoeff()*/ << "\n\n";
|
||||
|
||||
// VERIFY(m2.isApprox(m3 * (m3.template triangularView<Eigen::LowerTriangular>().solve(m2)), largerEps));
|
||||
|
||||
// check solve with unit diagonal
|
||||
// m3 = m1.template triangularView<Eigen::UnitUpperTriangular>();
|
||||
// VERIFY(m2.isApprox(m3 * (m1.template triangularView<Eigen::UnitUpperTriangular>().solve(m2)), largerEps));
|
||||
m3 = m1.template triangularView<Eigen::UnitUpperTriangular>();
|
||||
VERIFY(m2.isApprox(m3 * (m1.template triangularView<Eigen::UnitUpperTriangular>().solve(m2)), largerEps));
|
||||
|
||||
// VERIFY(( m1.template triangularView<Eigen::UpperTriangular>()
|
||||
// * m2.template triangularView<Eigen::UpperTriangular>()).isUpperTriangular());
|
||||
@ -136,17 +127,12 @@ template<typename MatrixType> void triangular(const MatrixType& m)
|
||||
void test_triangular()
|
||||
{
|
||||
for(int i = 0; i < g_repeat ; i++) {
|
||||
// CALL_SUBTEST( triangular(Matrix<float, 1, 1>()) );
|
||||
// CALL_SUBTEST( triangular(Matrix<float, 2, 2>()) );
|
||||
// CALL_SUBTEST( triangular(Matrix3d()) );
|
||||
// CALL_SUBTEST( triangular(MatrixXcf(4, 4)) );
|
||||
// CALL_SUBTEST( triangular(Matrix<std::complex<float>,8, 8>()) );
|
||||
// CALL_SUBTEST( triangular(MatrixXd(1,1)) );
|
||||
// CALL_SUBTEST( triangular(MatrixXd(2,2)) );
|
||||
// CALL_SUBTEST( triangular(MatrixXd(3,3)) );
|
||||
// CALL_SUBTEST( triangular(MatrixXd(5,5)) );
|
||||
// CALL_SUBTEST( triangular(MatrixXd(8,8)) );
|
||||
CALL_SUBTEST( triangular(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST( triangular(Matrix<float, 2, 2>()) );
|
||||
CALL_SUBTEST( triangular(Matrix3d()) );
|
||||
CALL_SUBTEST( triangular(MatrixXcf(4, 4)) );
|
||||
CALL_SUBTEST( triangular(Matrix<std::complex<float>,8, 8>()) );
|
||||
CALL_SUBTEST( triangular(MatrixXd(17,17)) );
|
||||
// CALL_SUBTEST( triangular(Matrix<float,Dynamic,Dynamic,RowMajor>(5, 5)) );
|
||||
CALL_SUBTEST( triangular(Matrix<float,Dynamic,Dynamic,RowMajor>(5, 5)) );
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user