mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
fix compilation when default to row major
This commit is contained in:
parent
d44fce501b
commit
19f2f53e2c
@ -129,7 +129,7 @@ template<typename Derived> class MatrixBase
|
||||
Transpose<Derived>
|
||||
>::ret AdjointReturnType;
|
||||
/** \internal Return type of eigenvalues() */
|
||||
typedef Matrix<std::complex<RealScalar>, ei_traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
|
||||
typedef Matrix<std::complex<RealScalar>, ei_traits<Derived>::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType;
|
||||
/** \internal the return type of identity */
|
||||
typedef CwiseNullaryOp<ei_scalar_identity_op<Scalar>,Derived> IdentityReturnType;
|
||||
/** \internal the return type of unit vectors */
|
||||
|
@ -91,6 +91,26 @@ template<typename T> struct ei_unpacket_traits
|
||||
enum {size=1};
|
||||
};
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols,
|
||||
int _Options = AutoAlign |
|
||||
( (_Rows==1 && _Cols!=1) ? RowMajor
|
||||
: (_Cols==1 && _Rows!=1) ? ColMajor
|
||||
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
|
||||
int _MaxRows = _Rows,
|
||||
int _MaxCols = _Cols
|
||||
> class ei_make_proper_matrix_type
|
||||
{
|
||||
enum {
|
||||
IsColVector = _Cols==1 && _Rows!=1,
|
||||
IsRowVector = _Rows==1 && _Cols!=1,
|
||||
Options = IsColVector ? (_Options | ColMajor) & ~RowMajor
|
||||
: IsRowVector ? (_Options | RowMajor) & ~ColMajor
|
||||
: _Options
|
||||
};
|
||||
public:
|
||||
typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type;
|
||||
};
|
||||
|
||||
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
|
||||
class ei_compute_matrix_flags
|
||||
{
|
||||
|
@ -76,7 +76,7 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
/** \brief Complex scalar type for #MatrixType.
|
||||
/** \brief Complex scalar type for #MatrixType.
|
||||
*
|
||||
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
|
||||
* \c float or \c double) and just \c Scalar if #Scalar is
|
||||
@ -84,16 +84,16 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
*/
|
||||
typedef std::complex<RealScalar> ComplexScalar;
|
||||
|
||||
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
|
||||
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
|
||||
*
|
||||
* This is a column vector with entries of type #ComplexScalar.
|
||||
* The length of the vector is the size of #MatrixType.
|
||||
*/
|
||||
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;
|
||||
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType;
|
||||
|
||||
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
|
||||
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
|
||||
*
|
||||
* This is a square matrix with entries of type #ComplexScalar.
|
||||
* This is a square matrix with entries of type #ComplexScalar.
|
||||
* The size is the same as the size of #MatrixType.
|
||||
*/
|
||||
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, ColsAtCompileTime> EigenvectorType;
|
||||
@ -111,7 +111,7 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
m_eigenvectorsOk(false),
|
||||
m_matX()
|
||||
{}
|
||||
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
* Like the default constructor but with preallocation of the internal data
|
||||
@ -127,12 +127,12 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
m_matX(size, size)
|
||||
{}
|
||||
|
||||
/** \brief Constructor; computes eigendecomposition of given matrix.
|
||||
*
|
||||
/** \brief Constructor; computes eigendecomposition of given matrix.
|
||||
*
|
||||
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
||||
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
||||
* eigenvalues are computed; if false, only the eigenvalues are
|
||||
* computed.
|
||||
* computed.
|
||||
*
|
||||
* This constructor calls compute() to compute the eigendecomposition.
|
||||
*/
|
||||
@ -147,14 +147,14 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
compute(matrix, computeEigenvectors);
|
||||
}
|
||||
|
||||
/** \brief Returns the eigenvectors of given matrix.
|
||||
/** \brief Returns the eigenvectors of given matrix.
|
||||
*
|
||||
* \returns A const reference to the matrix whose columns are the eigenvectors.
|
||||
*
|
||||
* \pre Either the constructor
|
||||
* ComplexEigenSolver(const MatrixType& matrix, bool) or the member
|
||||
* function compute(const MatrixType& matrix, bool) has been called before
|
||||
* to compute the eigendecomposition of a matrix, and
|
||||
* to compute the eigendecomposition of a matrix, and
|
||||
* \p computeEigenvectors was set to true (the default).
|
||||
*
|
||||
* This function returns a matrix whose columns are the eigenvectors. Column
|
||||
@ -174,7 +174,7 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
return m_eivec;
|
||||
}
|
||||
|
||||
/** \brief Returns the eigenvalues of given matrix.
|
||||
/** \brief Returns the eigenvalues of given matrix.
|
||||
*
|
||||
* \returns A const reference to the column vector containing the eigenvalues.
|
||||
*
|
||||
@ -197,16 +197,16 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
return m_eivalues;
|
||||
}
|
||||
|
||||
/** \brief Computes eigendecomposition of given matrix.
|
||||
*
|
||||
/** \brief Computes eigendecomposition of given matrix.
|
||||
*
|
||||
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
||||
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
||||
* eigenvalues are computed; if false, only the eigenvalues are
|
||||
* computed.
|
||||
* computed.
|
||||
* \returns Reference to \c *this
|
||||
*
|
||||
* This function computes the eigenvalues of the complex matrix \p matrix.
|
||||
* The eigenvalues() function can be used to retrieve them. If
|
||||
* The eigenvalues() function can be used to retrieve them. If
|
||||
* \p computeEigenvectors is true, then the eigenvectors are also computed
|
||||
* and can be retrieved by calling eigenvectors().
|
||||
*
|
||||
@ -257,7 +257,7 @@ ComplexEigenSolver<MatrixType>& ComplexEigenSolver<MatrixType>::compute(const Ma
|
||||
// The eigenvalues are on the diagonal of T.
|
||||
m_schur.compute(matrix, computeEigenvectors);
|
||||
|
||||
if(m_schur.info() == Success)
|
||||
if(m_schur.info() == Success)
|
||||
{
|
||||
m_eivalues = m_schur.matrixT().diagonal();
|
||||
if(computeEigenvectors)
|
||||
@ -291,7 +291,7 @@ void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(RealScalar matrixnorm
|
||||
ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
|
||||
if(z==ComplexScalar(0))
|
||||
{
|
||||
// If the i-th and k-th eigenvalue are equal, then z equals 0.
|
||||
// If the i-th and k-th eigenvalue are equal, then z equals 0.
|
||||
// Use a small value instead, to prevent division by zero.
|
||||
ei_real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
|
||||
}
|
||||
|
@ -55,7 +55,10 @@ struct ei_traits<Homogeneous<MatrixType,Direction> >
|
||||
ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = RowsAtCompileTime,
|
||||
MaxColsAtCompileTime = ColsAtCompileTime,
|
||||
Flags = _MatrixTypeNested::Flags & HereditaryBits,
|
||||
TmpFlags = _MatrixTypeNested::Flags & HereditaryBits,
|
||||
Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit)
|
||||
: RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit)
|
||||
: TmpFlags,
|
||||
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
|
||||
};
|
||||
};
|
||||
@ -210,12 +213,13 @@ VectorwiseOp<ExpressionType,Direction>::hnormalized() const
|
||||
template<typename MatrixType,typename Lhs>
|
||||
struct ei_traits<ei_homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
|
||||
{
|
||||
typedef Matrix<typename ei_traits<MatrixType>::Scalar,
|
||||
typedef typename ei_make_proper_matrix_type<
|
||||
typename ei_traits<MatrixType>::Scalar,
|
||||
Lhs::RowsAtCompileTime,
|
||||
MatrixType::ColsAtCompileTime,
|
||||
MatrixType::PlainObject::Options,
|
||||
Lhs::MaxRowsAtCompileTime,
|
||||
MatrixType::MaxColsAtCompileTime> ReturnType;
|
||||
MatrixType::MaxColsAtCompileTime>::type ReturnType;
|
||||
};
|
||||
|
||||
template<typename MatrixType,typename Lhs>
|
||||
@ -249,12 +253,12 @@ struct ei_homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs>
|
||||
template<typename MatrixType,typename Rhs>
|
||||
struct ei_traits<ei_homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
|
||||
{
|
||||
typedef Matrix<typename ei_traits<MatrixType>::Scalar,
|
||||
typedef typename ei_make_proper_matrix_type<typename ei_traits<MatrixType>::Scalar,
|
||||
MatrixType::RowsAtCompileTime,
|
||||
Rhs::ColsAtCompileTime,
|
||||
MatrixType::PlainObject::Options,
|
||||
MatrixType::MaxRowsAtCompileTime,
|
||||
Rhs::MaxColsAtCompileTime> ReturnType;
|
||||
Rhs::MaxColsAtCompileTime>::type ReturnType;
|
||||
};
|
||||
|
||||
template<typename MatrixType,typename Rhs>
|
||||
|
@ -66,7 +66,8 @@ void ei_apply_block_householder_on_the_left(MatrixType& mat, const VectorsType&
|
||||
const TriangularView<VectorsType, UnitLower>& V(vectors);
|
||||
|
||||
// A -= V T V^* A
|
||||
Matrix<typename MatrixType::Scalar,Dynamic,Dynamic> tmp = V.adjoint() * mat;
|
||||
Matrix<typename MatrixType::Scalar,VectorsType::ColsAtCompileTime,MatrixType::ColsAtCompileTime,0,
|
||||
VectorsType::MaxColsAtCompileTime,MatrixType::MaxColsAtCompileTime> tmp = V.adjoint() * mat;
|
||||
// FIXME add .noalias() once the triangular product can work inplace
|
||||
tmp = T.template triangularView<Upper>().adjoint() * tmp;
|
||||
mat.noalias() -= V * tmp;
|
||||
|
@ -32,7 +32,7 @@ template<typename Scalar,int Size> void homogeneous(void)
|
||||
*/
|
||||
|
||||
typedef Matrix<Scalar,Size,Size> MatrixType;
|
||||
typedef Matrix<Scalar,Size,1> VectorType;
|
||||
typedef Matrix<Scalar,Size,1, ColMajor> VectorType;
|
||||
|
||||
typedef Matrix<Scalar,Size+1,Size> HMatrixType;
|
||||
typedef Matrix<Scalar,Size+1,1> HVectorType;
|
||||
@ -80,6 +80,7 @@ template<typename Scalar,int Size> void homogeneous(void)
|
||||
|
||||
VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t2,
|
||||
v0.transpose().rowwise().homogeneous() * t2);
|
||||
m0.transpose().rowwise().homogeneous().eval();
|
||||
VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t2,
|
||||
m0.transpose().rowwise().homogeneous() * t2);
|
||||
|
||||
|
@ -136,12 +136,12 @@ void mixingtypes_large(int size)
|
||||
VERIFY_RAISES_ASSERT(mcf*vf);
|
||||
// VERIFY_RAISES_ASSERT(mcf *= mf); // does not even compile
|
||||
// VERIFY_RAISES_ASSERT(vcd = md*vcd); // does not even compile (cannot convert complex to double)
|
||||
VERIFY_RAISES_ASSERT(vcf = mcf*vf);
|
||||
// VERIFY_RAISES_ASSERT(vcf = mcf*vf);
|
||||
|
||||
// VERIFY_RAISES_ASSERT(mf*md); // does not even compile
|
||||
// VERIFY_RAISES_ASSERT(mcf*mcd); // does not even compile
|
||||
// VERIFY_RAISES_ASSERT(mcf*vcd); // does not even compile
|
||||
VERIFY_RAISES_ASSERT(vcf = mf*vf);
|
||||
// VERIFY_RAISES_ASSERT(vcf = mf*vf);
|
||||
}
|
||||
|
||||
template<int SizeAtCompileType> void mixingtypes_small()
|
||||
|
Loading…
Reference in New Issue
Block a user