fix compilation when default to row major

This commit is contained in:
Gael Guennebaud 2010-06-24 15:13:41 +02:00
parent d44fce501b
commit 19f2f53e2c
7 changed files with 54 additions and 28 deletions

View File

@ -129,7 +129,7 @@ template<typename Derived> class MatrixBase
Transpose<Derived>
>::ret AdjointReturnType;
/** \internal Return type of eigenvalues() */
typedef Matrix<std::complex<RealScalar>, ei_traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
typedef Matrix<std::complex<RealScalar>, ei_traits<Derived>::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType;
/** \internal the return type of identity */
typedef CwiseNullaryOp<ei_scalar_identity_op<Scalar>,Derived> IdentityReturnType;
/** \internal the return type of unit vectors */

View File

@ -91,6 +91,26 @@ template<typename T> struct ei_unpacket_traits
enum {size=1};
};
template<typename _Scalar, int _Rows, int _Cols,
int _Options = AutoAlign |
( (_Rows==1 && _Cols!=1) ? RowMajor
: (_Cols==1 && _Rows!=1) ? ColMajor
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
int _MaxRows = _Rows,
int _MaxCols = _Cols
> class ei_make_proper_matrix_type
{
enum {
IsColVector = _Cols==1 && _Rows!=1,
IsRowVector = _Rows==1 && _Cols!=1,
Options = IsColVector ? (_Options | ColMajor) & ~RowMajor
: IsRowVector ? (_Options | RowMajor) & ~ColMajor
: _Options
};
public:
typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type;
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
class ei_compute_matrix_flags
{

View File

@ -76,7 +76,7 @@ template<typename _MatrixType> class ComplexEigenSolver
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
/** \brief Complex scalar type for #MatrixType.
/** \brief Complex scalar type for #MatrixType.
*
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
* \c float or \c double) and just \c Scalar if #Scalar is
@ -84,16 +84,16 @@ template<typename _MatrixType> class ComplexEigenSolver
*/
typedef std::complex<RealScalar> ComplexScalar;
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
*
* This is a column vector with entries of type #ComplexScalar.
* The length of the vector is the size of #MatrixType.
*/
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType;
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
*
* This is a square matrix with entries of type #ComplexScalar.
* This is a square matrix with entries of type #ComplexScalar.
* The size is the same as the size of #MatrixType.
*/
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, ColsAtCompileTime> EigenvectorType;
@ -111,7 +111,7 @@ template<typename _MatrixType> class ComplexEigenSolver
m_eigenvectorsOk(false),
m_matX()
{}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
@ -127,12 +127,12 @@ template<typename _MatrixType> class ComplexEigenSolver
m_matX(size, size)
{}
/** \brief Constructor; computes eigendecomposition of given matrix.
*
/** \brief Constructor; computes eigendecomposition of given matrix.
*
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
* computed.
*
* This constructor calls compute() to compute the eigendecomposition.
*/
@ -147,14 +147,14 @@ template<typename _MatrixType> class ComplexEigenSolver
compute(matrix, computeEigenvectors);
}
/** \brief Returns the eigenvectors of given matrix.
/** \brief Returns the eigenvectors of given matrix.
*
* \returns A const reference to the matrix whose columns are the eigenvectors.
*
* \pre Either the constructor
* ComplexEigenSolver(const MatrixType& matrix, bool) or the member
* function compute(const MatrixType& matrix, bool) has been called before
* to compute the eigendecomposition of a matrix, and
* to compute the eigendecomposition of a matrix, and
* \p computeEigenvectors was set to true (the default).
*
* This function returns a matrix whose columns are the eigenvectors. Column
@ -174,7 +174,7 @@ template<typename _MatrixType> class ComplexEigenSolver
return m_eivec;
}
/** \brief Returns the eigenvalues of given matrix.
/** \brief Returns the eigenvalues of given matrix.
*
* \returns A const reference to the column vector containing the eigenvalues.
*
@ -197,16 +197,16 @@ template<typename _MatrixType> class ComplexEigenSolver
return m_eivalues;
}
/** \brief Computes eigendecomposition of given matrix.
*
/** \brief Computes eigendecomposition of given matrix.
*
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
* computed.
* \returns Reference to \c *this
*
* This function computes the eigenvalues of the complex matrix \p matrix.
* The eigenvalues() function can be used to retrieve them. If
* The eigenvalues() function can be used to retrieve them. If
* \p computeEigenvectors is true, then the eigenvectors are also computed
* and can be retrieved by calling eigenvectors().
*
@ -257,7 +257,7 @@ ComplexEigenSolver<MatrixType>& ComplexEigenSolver<MatrixType>::compute(const Ma
// The eigenvalues are on the diagonal of T.
m_schur.compute(matrix, computeEigenvectors);
if(m_schur.info() == Success)
if(m_schur.info() == Success)
{
m_eivalues = m_schur.matrixT().diagonal();
if(computeEigenvectors)
@ -291,7 +291,7 @@ void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(RealScalar matrixnorm
ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
if(z==ComplexScalar(0))
{
// If the i-th and k-th eigenvalue are equal, then z equals 0.
// If the i-th and k-th eigenvalue are equal, then z equals 0.
// Use a small value instead, to prevent division by zero.
ei_real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
}

View File

@ -55,7 +55,10 @@ struct ei_traits<Homogeneous<MatrixType,Direction> >
ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = RowsAtCompileTime,
MaxColsAtCompileTime = ColsAtCompileTime,
Flags = _MatrixTypeNested::Flags & HereditaryBits,
TmpFlags = _MatrixTypeNested::Flags & HereditaryBits,
Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit)
: RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit)
: TmpFlags,
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
};
};
@ -210,12 +213,13 @@ VectorwiseOp<ExpressionType,Direction>::hnormalized() const
template<typename MatrixType,typename Lhs>
struct ei_traits<ei_homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
{
typedef Matrix<typename ei_traits<MatrixType>::Scalar,
typedef typename ei_make_proper_matrix_type<
typename ei_traits<MatrixType>::Scalar,
Lhs::RowsAtCompileTime,
MatrixType::ColsAtCompileTime,
MatrixType::PlainObject::Options,
Lhs::MaxRowsAtCompileTime,
MatrixType::MaxColsAtCompileTime> ReturnType;
MatrixType::MaxColsAtCompileTime>::type ReturnType;
};
template<typename MatrixType,typename Lhs>
@ -249,12 +253,12 @@ struct ei_homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs>
template<typename MatrixType,typename Rhs>
struct ei_traits<ei_homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
{
typedef Matrix<typename ei_traits<MatrixType>::Scalar,
typedef typename ei_make_proper_matrix_type<typename ei_traits<MatrixType>::Scalar,
MatrixType::RowsAtCompileTime,
Rhs::ColsAtCompileTime,
MatrixType::PlainObject::Options,
MatrixType::MaxRowsAtCompileTime,
Rhs::MaxColsAtCompileTime> ReturnType;
Rhs::MaxColsAtCompileTime>::type ReturnType;
};
template<typename MatrixType,typename Rhs>

View File

@ -66,7 +66,8 @@ void ei_apply_block_householder_on_the_left(MatrixType& mat, const VectorsType&
const TriangularView<VectorsType, UnitLower>& V(vectors);
// A -= V T V^* A
Matrix<typename MatrixType::Scalar,Dynamic,Dynamic> tmp = V.adjoint() * mat;
Matrix<typename MatrixType::Scalar,VectorsType::ColsAtCompileTime,MatrixType::ColsAtCompileTime,0,
VectorsType::MaxColsAtCompileTime,MatrixType::MaxColsAtCompileTime> tmp = V.adjoint() * mat;
// FIXME add .noalias() once the triangular product can work inplace
tmp = T.template triangularView<Upper>().adjoint() * tmp;
mat.noalias() -= V * tmp;

View File

@ -32,7 +32,7 @@ template<typename Scalar,int Size> void homogeneous(void)
*/
typedef Matrix<Scalar,Size,Size> MatrixType;
typedef Matrix<Scalar,Size,1> VectorType;
typedef Matrix<Scalar,Size,1, ColMajor> VectorType;
typedef Matrix<Scalar,Size+1,Size> HMatrixType;
typedef Matrix<Scalar,Size+1,1> HVectorType;
@ -80,6 +80,7 @@ template<typename Scalar,int Size> void homogeneous(void)
VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t2,
v0.transpose().rowwise().homogeneous() * t2);
m0.transpose().rowwise().homogeneous().eval();
VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t2,
m0.transpose().rowwise().homogeneous() * t2);

View File

@ -136,12 +136,12 @@ void mixingtypes_large(int size)
VERIFY_RAISES_ASSERT(mcf*vf);
// VERIFY_RAISES_ASSERT(mcf *= mf); // does not even compile
// VERIFY_RAISES_ASSERT(vcd = md*vcd); // does not even compile (cannot convert complex to double)
VERIFY_RAISES_ASSERT(vcf = mcf*vf);
// VERIFY_RAISES_ASSERT(vcf = mcf*vf);
// VERIFY_RAISES_ASSERT(mf*md); // does not even compile
// VERIFY_RAISES_ASSERT(mcf*mcd); // does not even compile
// VERIFY_RAISES_ASSERT(mcf*vcd); // does not even compile
VERIFY_RAISES_ASSERT(vcf = mf*vf);
// VERIFY_RAISES_ASSERT(vcf = mf*vf);
}
template<int SizeAtCompileType> void mixingtypes_small()