mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
Merged in codeplaysoftware/eigen-upstream-pure/Pointer_type_creation (pull request PR-461)
Creating a pointer type in TensorCustomOp.h
This commit is contained in:
commit
19df4d5752
@ -88,6 +88,7 @@ struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Devi
|
||||
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
||||
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
|
||||
static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
|
||||
typedef typename PointerType<CoeffReturnType, Device>::Type PointerT;
|
||||
|
||||
enum {
|
||||
IsAligned = false,
|
||||
@ -106,12 +107,12 @@ struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Devi
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(PointerT data) {
|
||||
if (data) {
|
||||
evalTo(data);
|
||||
return false;
|
||||
} else {
|
||||
m_result = static_cast<CoeffReturnType*>(
|
||||
m_result = static_cast<PointerT>(
|
||||
m_device.allocate_temp(dimensions().TotalSize() * sizeof(Scalar)));
|
||||
evalTo(m_result);
|
||||
return true;
|
||||
@ -139,23 +140,22 @@ struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Devi
|
||||
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC typename Eigen::internal::traits<XprType>::PointerType data() const { return m_result; }
|
||||
EIGEN_DEVICE_FUNC PointerT data() const { return m_result; }
|
||||
|
||||
#ifdef EIGEN_USE_SYCL
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const { return m_device; }
|
||||
#endif
|
||||
|
||||
protected:
|
||||
EIGEN_DEVICE_FUNC void evalTo(Scalar* data) {
|
||||
TensorMap<Tensor<CoeffReturnType, NumDims, Layout, Index> > result(
|
||||
data, m_dimensions);
|
||||
EIGEN_DEVICE_FUNC void evalTo(PointerT data) {
|
||||
TensorMap<Tensor<CoeffReturnType, NumDims, Layout, Index> > result(data, m_dimensions);
|
||||
m_op.func().eval(m_op.expression(), result, m_device);
|
||||
}
|
||||
|
||||
Dimensions m_dimensions;
|
||||
const ArgType m_op;
|
||||
const Device& m_device;
|
||||
CoeffReturnType* m_result;
|
||||
PointerT m_result;
|
||||
};
|
||||
|
||||
|
||||
@ -250,6 +250,7 @@ struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType,
|
||||
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
||||
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
|
||||
static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
|
||||
typedef typename PointerType<CoeffReturnType, Device>::Type PointerT;
|
||||
|
||||
enum {
|
||||
IsAligned = false,
|
||||
@ -268,12 +269,12 @@ struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType,
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(PointerT data) {
|
||||
if (data) {
|
||||
evalTo(data);
|
||||
return false;
|
||||
} else {
|
||||
m_result = static_cast<Scalar *>(m_device.allocate_temp(dimensions().TotalSize() * sizeof(Scalar)));
|
||||
m_result = static_cast<PointerT>(m_device.allocate_temp(dimensions().TotalSize() * sizeof(CoeffReturnType)));
|
||||
evalTo(m_result);
|
||||
return true;
|
||||
}
|
||||
@ -300,22 +301,22 @@ struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType,
|
||||
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC typename internal::traits<XprType>::PointerType data() const { return m_result; }
|
||||
EIGEN_DEVICE_FUNC PointerT data() const { return m_result; }
|
||||
|
||||
#ifdef EIGEN_USE_SYCL
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const { return m_device; }
|
||||
#endif
|
||||
|
||||
protected:
|
||||
EIGEN_DEVICE_FUNC void evalTo(Scalar* data) {
|
||||
TensorMap<Tensor<Scalar, NumDims, Layout> > result(data, m_dimensions);
|
||||
EIGEN_DEVICE_FUNC void evalTo(PointerT data) {
|
||||
TensorMap<Tensor<CoeffReturnType, NumDims, Layout> > result(data, m_dimensions);
|
||||
m_op.func().eval(m_op.lhsExpression(), m_op.rhsExpression(), result, m_device);
|
||||
}
|
||||
|
||||
Dimensions m_dimensions;
|
||||
const XprType m_op;
|
||||
const Device& m_device;
|
||||
CoeffReturnType* m_result;
|
||||
PointerT m_result;
|
||||
};
|
||||
|
||||
|
||||
|
@ -24,6 +24,14 @@ template<typename T> struct MakePointer {
|
||||
typedef T ScalarType;
|
||||
};
|
||||
|
||||
// The PointerType class is a container of the device specefic pointer
|
||||
// used for refering to a Pointer on TensorEvaluator class. While the TensorExpression
|
||||
// is a device-agnostic type and need MakePointer class for type conversion,
|
||||
// the TensorEvaluator calss can be specialized for a device, hence it is possible
|
||||
// to construct different types of temproray storage memory in TensorEvaluator
|
||||
// for different devices by specializing the following PointerType class.
|
||||
template<typename T, typename Device> struct PointerType : MakePointer<T>{};
|
||||
|
||||
namespace internal{
|
||||
template<typename A, typename B> struct Pointer_type_promotion {
|
||||
static const bool val=false;
|
||||
|
Loading…
Reference in New Issue
Block a user