Merged in codeplaysoftware/eigen-upstream-pure/Pointer_type_creation (pull request PR-461)

Creating a pointer type in TensorCustomOp.h
This commit is contained in:
Benoit Steiner 2018-08-16 18:28:33 +00:00
commit 19df4d5752
2 changed files with 22 additions and 13 deletions

View File

@ -88,6 +88,7 @@ struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Devi
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
typedef typename PointerType<CoeffReturnType, Device>::Type PointerT;
enum {
IsAligned = false,
@ -106,12 +107,12 @@ struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Devi
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(PointerT data) {
if (data) {
evalTo(data);
return false;
} else {
m_result = static_cast<CoeffReturnType*>(
m_result = static_cast<PointerT>(
m_device.allocate_temp(dimensions().TotalSize() * sizeof(Scalar)));
evalTo(m_result);
return true;
@ -139,23 +140,22 @@ struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Devi
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
}
EIGEN_DEVICE_FUNC typename Eigen::internal::traits<XprType>::PointerType data() const { return m_result; }
EIGEN_DEVICE_FUNC PointerT data() const { return m_result; }
#ifdef EIGEN_USE_SYCL
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const { return m_device; }
#endif
protected:
EIGEN_DEVICE_FUNC void evalTo(Scalar* data) {
TensorMap<Tensor<CoeffReturnType, NumDims, Layout, Index> > result(
data, m_dimensions);
EIGEN_DEVICE_FUNC void evalTo(PointerT data) {
TensorMap<Tensor<CoeffReturnType, NumDims, Layout, Index> > result(data, m_dimensions);
m_op.func().eval(m_op.expression(), result, m_device);
}
Dimensions m_dimensions;
const ArgType m_op;
const Device& m_device;
CoeffReturnType* m_result;
PointerT m_result;
};
@ -250,6 +250,7 @@ struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType,
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
typedef typename PointerType<CoeffReturnType, Device>::Type PointerT;
enum {
IsAligned = false,
@ -268,12 +269,12 @@ struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType,
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(PointerT data) {
if (data) {
evalTo(data);
return false;
} else {
m_result = static_cast<Scalar *>(m_device.allocate_temp(dimensions().TotalSize() * sizeof(Scalar)));
m_result = static_cast<PointerT>(m_device.allocate_temp(dimensions().TotalSize() * sizeof(CoeffReturnType)));
evalTo(m_result);
return true;
}
@ -300,22 +301,22 @@ struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType,
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
}
EIGEN_DEVICE_FUNC typename internal::traits<XprType>::PointerType data() const { return m_result; }
EIGEN_DEVICE_FUNC PointerT data() const { return m_result; }
#ifdef EIGEN_USE_SYCL
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const { return m_device; }
#endif
protected:
EIGEN_DEVICE_FUNC void evalTo(Scalar* data) {
TensorMap<Tensor<Scalar, NumDims, Layout> > result(data, m_dimensions);
EIGEN_DEVICE_FUNC void evalTo(PointerT data) {
TensorMap<Tensor<CoeffReturnType, NumDims, Layout> > result(data, m_dimensions);
m_op.func().eval(m_op.lhsExpression(), m_op.rhsExpression(), result, m_device);
}
Dimensions m_dimensions;
const XprType m_op;
const Device& m_device;
CoeffReturnType* m_result;
PointerT m_result;
};

View File

@ -24,6 +24,14 @@ template<typename T> struct MakePointer {
typedef T ScalarType;
};
// The PointerType class is a container of the device specefic pointer
// used for refering to a Pointer on TensorEvaluator class. While the TensorExpression
// is a device-agnostic type and need MakePointer class for type conversion,
// the TensorEvaluator calss can be specialized for a device, hence it is possible
// to construct different types of temproray storage memory in TensorEvaluator
// for different devices by specializing the following PointerType class.
template<typename T, typename Device> struct PointerType : MakePointer<T>{};
namespace internal{
template<typename A, typename B> struct Pointer_type_promotion {
static const bool val=false;