improved Quaternion class:

- Euler angles and angle axis conversions,
 - stable spherical interpolation
 - documentation
 - update the respective unit test
This commit is contained in:
Gael Guennebaud 2008-06-03 13:43:29 +00:00
parent bcb32839c2
commit 196f38f5db
3 changed files with 169 additions and 21 deletions

View File

@ -8,6 +8,10 @@ namespace Eigen {
#include "src/Geometry/Cross.h"
#include "src/Geometry/Quaternion.h"
// the Geometry module use cwiseCos and cwiseSin which are defined in the Array module
#include "src/Array/CwiseOperators.h"
#include "src/Array/Functors.h"
} // namespace Eigen
#endif // EIGEN_GEOMETRY_MODULE_H

View File

@ -25,6 +25,21 @@
#ifndef EIGEN_QUATERNION_H
#define EIGEN_QUATERNION_H
/** \class Quaternion
*
* \brief The quaternion class used to represent 3D orientations and rotations
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
*
* This class represents a quaternion that is a convenient representation of
* orientations and rotations of objects in three dimensions. Compared to other
* representations like Euler angles or 3x3 matrices, quatertions offer the
* following advantages:
* - compact storage (4 scalars)
* - efficient to compose (28 flops),
* - stable spherical interpolation
*
*/
template<typename _Scalar>
struct ei_traits<Quaternion<_Scalar> >
{
@ -103,6 +118,7 @@ public:
}
/** Copy constructor */
inline Quaternion(const Quaternion& other)
: Base()
{
*this = other;
}
@ -123,12 +139,27 @@ public:
return operator=<Quaternion>(other);
}
Matrix3 toRotationMatrix(void) const;
/** \overload
* \returns a quaternion representing an identity rotation
*/
static Quaternion identity() { return Quaternion(1, 0, 0, 0); }
/** \overload
* \sa Quaternion::identity()
*/
Quaternion& setIdentity() { *this << 1, 0, 0, 0; return *this; }
template<typename Derived>
void fromRotationMatrix(const MatrixBase<Derived>& m);
Quaternion& fromRotationMatrix(const MatrixBase<Derived>& m);
Matrix3 toRotationMatrix(void) const;
template<typename Derived>
Quaternion& fromAngleAxis (const Scalar& angle, const MatrixBase<Derived>& axis);
void toAngleAxis(Scalar& angle, Vector3& axis) const;
Quaternion& fromEulerAngles(Vector3 eulerAngles);
Vector3 toEulerAngles(void) const;
template<typename Derived1, typename Derived2>
Quaternion& fromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
@ -139,14 +170,8 @@ public:
Quaternion inverse(void) const;
Quaternion unitInverse(void) const;
/** Rotation of a vector by a quaternion.
\remarks If the quaternion is used to rotate several points (>3)
then it is much more efficient to first convert it to a 3x3 Matrix.
Comparison of the operation cost for n transformations:
* Quaternion: 30n
* Via Matrix3: 24 + 15n
\todo write a small benchmark.
*/
Quaternion slerp(Scalar t, const Quaternion& other) const;
template<typename Derived>
Vector3 operator* (const MatrixBase<Derived>& vec) const;
@ -155,6 +180,7 @@ private:
};
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
{
@ -173,6 +199,13 @@ inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& oth
return (*this = *this * other);
}
/** Rotation of a vector by a quaternion.
* \remarks If the quaternion is used to rotate several points (>1)
* then it is much more efficient to first convert it to a 3x3 Matrix.
* Comparison of the operation cost for n transformations:
* - Quaternion: 30n
* - Via a Matrix3: 24 + 15n
*/
template <typename Scalar>
template<typename Derived>
inline typename Quaternion<Scalar>::Vector3
@ -181,15 +214,16 @@ Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const
// Note that this algorithm comes from the optimization by hand
// of the conversion to a Matrix followed by a Matrix/Vector product.
// It appears to be much faster than the common algorithm found
// in the litterature (30 versus 39 flops). On the other hand it
// requires two Vector3 as temporaries.
// in the litterature (30 versus 39 flops). It also requires two
// Vector3 as temporaries.
Vector3 uv;
uv = 2 * this->template start<3>().cross(v);
return v + this->w() * uv + this->template start<3>().cross(uv);
}
/** Convert the quaternion to a 3x3 rotation matrix */
template<typename Scalar>
typename Quaternion<Scalar>::Matrix3
inline typename Quaternion<Scalar>::Matrix3
Quaternion<Scalar>::toRotationMatrix(void) const
{
Matrix3 res;
@ -220,11 +254,14 @@ Quaternion<Scalar>::toRotationMatrix(void) const
return res;
}
/** updates \c *this from the rotation matrix \a m and returns a reference to \c *this
* \warning the size of the input matrix expression \a m must be 3x3 at compile time
*/
template<typename Scalar>
template<typename Derived>
void Quaternion<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& m)
Quaternion<Scalar>& Quaternion<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& m)
{
assert(Derived::RowsAtCompileTime==3 && Derived::ColsAtCompileTime==3);
ei_assert(Derived::RowsAtCompileTime==3 && Derived::ColsAtCompileTime==3);
// This algorithm comes from "Quaternion Calculus and Fast Animation",
// Ken Shoemake, 1987 SIGGRAPH course notes
Scalar t = m.trace();
@ -254,22 +291,89 @@ void Quaternion<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& m)
this->coeffRef(j) = (m.coeff(j,i)+m.coeff(i,j))*t;
this->coeffRef(k) = (m.coeff(k,i)+m.coeff(i,k))*t;
}
return *this;
}
/** updates \c *this from the rotation defined by axis \a axis and angle \a angle
* and returns a reference to \c *this
* \warning the size of the input vector expression \a axis must be 3 at compile time
*/
template<typename Scalar>
template<typename Derived>
inline Quaternion<Scalar>& Quaternion<Scalar>
::fromAngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis)
{
ei_assert(Derived::SizeAtCompileTime==3);
Scalar ha = 0.5*angle;
this->w() = ei_cos(ha);
this->template start<3>() = ei_sin(ha) * axis;
return *this;
}
/** Computes and returns the angle and axis of the rotation represented by the quaternion.
* The values are returned in the arguments \a angle and \a axis respectively.
* The returned axis is normalized.
*/
template <typename Scalar>
void Quaternion<Scalar>::toAngleAxis(Scalar& angle, Vector3& axis) const
{
// FIXME should we split this function to an "angle" and an "axis" functions ?
// the drawbacks is that this approach would require to compute twice the norm of (x,y,z)...
// or we returns a Vector4, or a small AngleAxis object... ???
Scalar n2 = this->template start<3>().norm2();
if (ei_isMuchSmallerThan(n2,Scalar(1)))
{
angle = 0;
axis << 1, 0, 0;
}
else
{
angle = 2*std::acos(this->w());
axis = this->template start<3>() / ei_sqrt(n2);
}
}
/** updates \c *this from the rotation defined by the Euler angles \a eulerAngles,
* and returns a reference to \c *this
*/
template <typename Scalar>
Quaternion<Scalar>& Quaternion<Scalar>::fromEulerAngles(Vector3 eulerAngles)
{
// FIXME should the arguments be 3 scalars or a single Vector3 ?
eulerAngles *= 0.5;
Vector3 cosines = eulerAngles.cwiseCos();
Vector3 sines = eulerAngles.cwiseSin();
Scalar cYcZ = cosines.y() * cosines.z();
Scalar sYsZ = sines.y() * sines.z();
Scalar sYcZ = sines.y() * cosines.z();
Scalar cYsZ = cosines.y() * sines.z();
this->w() = cosines.x() * cYcZ + sines.x() * sYsZ;
this->x() = sines.x() * cYcZ - cosines.x() * sYsZ;
this->y() = cosines.x() * sYcZ + sines.x() * cYsZ;
this->z() = cosines.x() * cYsZ - sines.x() * sYcZ;
return *this;
}
/** Computes and returns the Euler angles corresponding to the quaternion \c *this.
*/
template <typename Scalar>
typename Quaternion<Scalar>::Vector3 Quaternion<Scalar>::toEulerAngles(void) const
{
Scalar y2 = this->y() * this->y();
return Vector3(
std::atan2(2*(this->w()*this->x() + this->y()*this->z()), (1 - 2*(this->x()*this->x() + y2))),
std::asin( 2*(this->w()*this->y() - this->z()*this->x())),
std::atan2(2*(this->w()*this->z() + this->x()*this->y()), (1 - 2*(y2 + this->z()*this->z()))));
}
/** Makes a quaternion representing the rotation between two vectors \a a and \a b.
* \returns a reference to the actual quaternion
* Note that the two input vectors are \b not assumed to be normalized.
* \returns a reference to the actual quaternion
* Note that the two input vectors have \b not to be normalized.
*/
template<typename Scalar>
template<typename Derived1, typename Derived2>
@ -294,6 +398,7 @@ inline Quaternion<Scalar>& Quaternion<Scalar>::fromTwoVectors(const MatrixBase<D
return *this;
}
/** \returns the inverse of \c *this */
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
{
@ -307,10 +412,34 @@ inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
}
}
/** Like Quaternion::inverse() but assumes the quaternion is normalized */
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::unitInverse() const
{
return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
}
/** \returns the spherical linear interpolation between the two quaternions
* \c *this and \a other at the parameter \a t
*/
template <typename Scalar>
Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
{
if (*this == other)
return *this;
Scalar d = this->dot(other);
// theta is the angle between the 2 quaternions
Scalar theta = std::acos(ei_abs(d));
Scalar sinTheta = ei_sin(theta);
Scalar scale0 = ei_sin( ( 1 - t ) * theta) / sinTheta;
Scalar scale1 = ei_sin( ( t * theta) ) / sinTheta;
if (d<0)
scale1 = -scale1;
return scale0 * (*this) + scale1 * other;
}
#endif // EIGEN_QUATERNION_H

View File

@ -37,27 +37,42 @@ template<typename Scalar> void geometry(void)
typedef Matrix<Scalar,4,1> Vector4;
typedef Quaternion<Scalar> Quaternion;
Quaternion q1, q2, q3;
Quaternion q1, q2;
Vector3 v0 = Vector3::random(),
v1 = Vector3::random(),
v2 = Vector3::random();
Scalar a;
q1.fromAngleAxis(ei_random<Scalar>(-M_PI, M_PI), v0.normalized());
q2.fromAngleAxis(ei_random<Scalar>(-M_PI, M_PI), v1.normalized());
// rotation matrix conversion
VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
VERIFY_IS_APPROX(q1 * q2 * v2,
q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
VERIFY_IS_NOT_APPROX(q2 * q1 * v2,
q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
q2.fromRotationMatrix(q1.toRotationMatrix());
VERIFY_IS_APPROX(q1*v1,q2*v1);
// Euler angle conversion
VERIFY_IS_APPROX(q2.fromEulerAngles(q1.toEulerAngles()) * v1, q1 * v1);
v2 = q2.toEulerAngles();
VERIFY_IS_APPROX(q2.fromEulerAngles(v2).toEulerAngles(), v2);
VERIFY_IS_NOT_APPROX(q2.fromEulerAngles(v2.cwiseProduct(Vector3(0.2,-0.2,1))).toEulerAngles(), v2);
// angle-axis conversion
q1.toAngleAxis(a, v2);
VERIFY_IS_APPROX(q1 * v1, q2.fromAngleAxis(a,v2) * v1);
VERIFY_IS_NOT_APPROX(q1 * v1, q2.fromAngleAxis(2*a,v2) * v1);
// from two vector creation
VERIFY_IS_APPROX(v2.normalized(),(q2.fromTwoVectors(v1,v2)*v1).normalized());
VERIFY_IS_APPROX(v2.normalized(),(q2.fromTwoVectors(v1,v2)*v1).normalized());
// cross product
VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v1), Scalar(1));
Matrix3 m;
m << v0.normalized(),
(v0.cross(v1)).normalized(),
@ -68,7 +83,7 @@ template<typename Scalar> void geometry(void)
void test_geometry()
{
for(int i = 0; i < g_repeat; i++) {
// CALL_SUBTEST( geometry<float>() );
CALL_SUBTEST( geometry<float>() );
CALL_SUBTEST( geometry<double>() );
}
}