add a flexible sparse matrix class designed for fast matrix assembly

This commit is contained in:
Gael Guennebaud 2009-01-19 15:20:45 +00:00
parent 385fd3d918
commit 178858f1bd
12 changed files with 512 additions and 117 deletions

View File

@ -77,6 +77,7 @@ namespace Eigen {
#include "src/Sparse/RandomSetter.h"
#include "src/Sparse/SparseBlock.h"
#include "src/Sparse/SparseMatrix.h"
#include "src/Sparse/DynamicSparseMatrix.h"
#include "src/Sparse/MappedSparseMatrix.h"
#include "src/Sparse/SparseVector.h"
#include "src/Sparse/CoreIterators.h"

View File

@ -114,8 +114,7 @@ struct ei_traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
MaxRowsAtCompileTime = _MaxRows,
MaxColsAtCompileTime = _MaxCols,
Flags = ei_compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
SupportedAccessPatterns = RandomAccessPattern
CoeffReadCost = NumTraits<Scalar>::ReadCost
};
};

View File

@ -239,9 +239,4 @@ enum {
HasDirectAccess = DirectAccessBit
};
const int FullyCoherentAccessPattern = 0x1;
const int InnerCoherentAccessPattern = 0x2 | FullyCoherentAccessPattern;
const int OuterCoherentAccessPattern = 0x4 | InnerCoherentAccessPattern;
const int RandomAccessPattern = 0x8 | OuterCoherentAccessPattern;
#endif // EIGEN_CONSTANTS_H

View File

@ -43,6 +43,7 @@ class CompressedStorage
}
CompressedStorage(const CompressedStorage& other)
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
{
*this = other;
}
@ -97,15 +98,15 @@ class CompressedStorage
m_indices[id] = i;
}
int size() const { return m_size; }
int allocatedSize() const { return m_allocatedSize; }
void clear() { m_size = 0; }
inline int size() const { return m_size; }
inline int allocatedSize() const { return m_allocatedSize; }
inline void clear() { m_size = 0; }
Scalar& value(int i) { return m_values[i]; }
const Scalar& value(int i) const { return m_values[i]; }
inline Scalar& value(int i) { return m_values[i]; }
inline const Scalar& value(int i) const { return m_values[i]; }
int& index(int i) { return m_indices[i]; }
const int& index(int i) const { return m_indices[i]; }
inline int& index(int i) { return m_indices[i]; }
inline const int& index(int i) const { return m_indices[i]; }
static CompressedStorage Map(int* indices, Scalar* values, int size)
{
@ -115,10 +116,77 @@ class CompressedStorage
res.m_allocatedSize = res.m_size = size;
return res;
}
/** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */
inline int searchLowerIndex(int key) const
{
return searchLowerIndex(0, m_size, key);
}
/** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */
inline int searchLowerIndex(int start, int end, int key) const
{
while(end>start)
{
int mid = (end+start)>>1;
if (m_indices[mid]<key)
start = mid+1;
else
end = mid;
}
return start;
}
/** \returns the stored value at index \a key
* If the value does not exist, then the value \a defaultValue is returned without any insertion. */
inline Scalar at(int key, Scalar defaultValue = Scalar(0)) const
{
if (m_size==0)
return defaultValue;
else if (key==m_indices[m_size-1])
return m_values[m_size-1];
// ^^ optimization: let's first check if it is the last coefficient
// (very common in high level algorithms)
const int id = searchLowerIndex(0,m_size-1,key);
return ((id<m_size) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
}
/** Like at(), but the search is performed in the range [start,end) */
inline Scalar atInRange(int start, int end, int key, Scalar defaultValue = Scalar(0)) const
{
if (start==end)
return Scalar(0);
else if (end>start && key==m_indices[end-1])
return m_values[end-1];
// ^^ optimization: let's first check if it is the last coefficient
// (very common in high level algorithms)
const int id = searchLowerIndex(start,end-1,key);
return ((id<end) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
}
/** \returns a reference to the value at index \a key
* If the value does not exist, then the value \a defaultValue is inserted
* such that the keys are sorted. */
inline Scalar& atWithInsertion(int key, Scalar defaultValue = Scalar(0))
{
int id = searchLowerIndex(0,m_size,key);
if (id>=m_size || m_indices[id]!=key)
{
resize(m_size+1,1);
for (int j=m_size-1; j>id; --j)
{
m_indices[j] = m_indices[j-1];
m_values[j] = m_values[j-1];
}
m_indices[id] = key;
m_values[id] = defaultValue;
}
return m_values[id];
}
protected:
void reallocate(int size)
inline void reallocate(int size)
{
Scalar* newValues = new Scalar[size];
int* newIndices = new int[size];

View File

@ -0,0 +1,284 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DYNAMIC_SPARSEMATRIX_H
#define EIGEN_DYNAMIC_SPARSEMATRIX_H
/** \class DynamicSparseMatrix
*
* \brief A sparse matrix class designed for matrix assembly purpose
*
* \param _Scalar the scalar type, i.e. the type of the coefficients
*
* Unlike SparseMatrix, this class provides a much higher degree of flexibility. In particular, it allows
* random read/write accesses in log(rho*outer_size) where \c rho is the probability that a coefficient is
* nonzero and outer_size is the number of columns if the matrix is column-major and the number of rows
* otherwise.
*
* Internally, the data are stored as a std::vector of compressed vector. The performances of random writes might
* decrease as the number of nonzeros per inner-vector increase. In practice, we observed very good performance
* till about 100 nonzeros/vector, and the performance remains relatively good till 500 nonzeros/vectors.
*
* \see SparseMatrix
*/
template<typename _Scalar, int _Flags>
struct ei_traits<DynamicSparseMatrix<_Scalar, _Flags> >
{
typedef _Scalar Scalar;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
Flags = SparseBit | _Flags,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
SupportedAccessPatterns = OuterRandomAccessPattern
};
};
template<typename _Scalar, int _Flags>
class DynamicSparseMatrix
: public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Flags> >
{
public:
EIGEN_SPARSE_GENERIC_PUBLIC_INTERFACE(DynamicSparseMatrix)
typedef MappedSparseMatrix<Scalar,Flags> Map;
protected:
enum { IsRowMajor = Base::IsRowMajor };
typedef DynamicSparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
int m_innerSize;
std::vector<CompressedStorage<Scalar> > m_data;
public:
inline int rows() const { return IsRowMajor ? outerSize() : m_innerSize; }
inline int cols() const { return IsRowMajor ? m_innerSize : outerSize(); }
inline int innerSize() const { return m_innerSize; }
inline int outerSize() const { return m_data.size(); }
inline int innerNonZeros(int j) const { return m_data[j].size(); }
/** \returns the coefficient value at given position \a row, \a col
* This operation involes a log(rho*outer_size) binary search.
*/
inline Scalar coeff(int row, int col) const
{
const int outer = IsRowMajor ? row : col;
const int inner = IsRowMajor ? col : row;
return m_data[outer].at(inner);
}
/** \returns a reference to the coefficient value at given position \a row, \a col
* This operation involes a log(rho*outer_size) binary search. If the coefficient does not
* exist yet, then a sorted insertion into a sequential buffer is performed.
*/
inline Scalar& coeffRef(int row, int col)
{
const int outer = IsRowMajor ? row : col;
const int inner = IsRowMajor ? col : row;
return m_data[outer].atWithInsertion(inner);
}
public:
class InnerIterator;
inline void setZero()
{
for (int j=0; j<outerSize(); ++j)
m_data[j].clear();
}
/** \returns the number of non zero coefficients */
inline int nonZeros() const
{
int res = 0;
for (int j=0; j<outerSize(); ++j)
res += m_data[j].size();
return res;
}
/** Set the matrix to zero and reserve the memory for \a reserveSize nonzero coefficients. */
inline void startFill(int reserveSize = 1000)
{
int reserveSizePerVector = std::max(reserveSize/outerSize(),4);
for (int j=0; j<outerSize(); ++j)
{
m_data[j].clear();
m_data[j].reserve(reserveSizePerVector);
}
}
/** inserts a nonzero coefficient at given coordinates \a row, \a col and returns its reference assuming that:
* 1 - the coefficient does not exist yet
* 2 - this the coefficient with greater inner coordinate for the given outer coordinate.
* In other words, assuming \c *this is column-major, then there must not exists any nonzero coefficient of coordinates
* \c i \c x \a col such that \c i >= \a row. Otherwise the matrix is invalid.
*
* \see fillrand(), coeffRef()
*/
inline Scalar& fill(int row, int col)
{
const int outer = IsRowMajor ? row : col;
const int inner = IsRowMajor ? col : row;
ei_assert(outer<int(m_data.size()) && inner<m_innerSize);
ei_assert((m_data[outer].size()==0) || (m_data[outer].index(m_data[outer].size()-1)<inner));
m_data[outer].append(0, inner);
return m_data[outer].value(m_data[outer].size()-1);
}
/** Like fill() but with random inner coordinates.
* Compared to the generic coeffRef(), the unique limitation is that we assume
* the coefficient does not exist yet.
*/
inline Scalar& fillrand(int row, int col)
{
const int outer = IsRowMajor ? row : col;
const int inner = IsRowMajor ? col : row;
int startId = 0;
int id = m_data[outer].size() - 1;
m_data[outer].resize(id+2,1);
while ( (id >= startId) && (m_data[outer].index(id) > inner) )
{
m_data[outer].index(id+1) = m_data[outer].index(id);
m_data[outer].value(id+1) = m_data[outer].value(id);
--id;
}
m_data[outer].index(id+1) = inner;
m_data[outer].value(id+1) = 0;
return m_data[outer].value(id+1);
}
/** Does nothing. Provided for compatibility with SparseMatrix. */
inline void endFill() {}
/** Resize the matrix without preserving the data (the matrix is set to zero)
*/
void resize(int rows, int cols)
{
const int outerSize = IsRowMajor ? rows : cols;
m_innerSize = IsRowMajor ? cols : rows;
setZero();
if (int(m_data.size()) != outerSize)
{
m_data.resize(outerSize);
}
}
void resizeAndKeepData(int rows, int cols)
{
const int outerSize = IsRowMajor ? rows : cols;
const int innerSize = IsRowMajor ? cols : rows;
if (m_innerSize>innerSize)
{
// remove all coefficients with innerCoord>=innerSize
// TODO
std::cerr << "not implemented yet\n";
exit(2);
}
if (m_data.size() != outerSize)
{
m_data.resize(outerSize);
}
}
inline DynamicSparseMatrix()
: m_innerSize(0)
{
ei_assert(innerSize()==0 && outerSize()==0);
}
inline DynamicSparseMatrix(int rows, int cols)
: m_innerSize(0)
{
resize(rows, cols);
}
template<typename OtherDerived>
inline DynamicSparseMatrix(const SparseMatrixBase<OtherDerived>& other)
: m_innerSize(0)
{
*this = other.derived();
}
inline DynamicSparseMatrix(const DynamicSparseMatrix& other)
: m_innerSize(0)
{
*this = other.derived();
}
inline void swap(DynamicSparseMatrix& other)
{
//EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
std::swap(m_innerSize, other.m_innerSize);
//std::swap(m_outerSize, other.m_outerSize);
m_data.swap(other.m_data);
}
inline DynamicSparseMatrix& operator=(const DynamicSparseMatrix& other)
{
if (other.isRValue())
{
swap(other.const_cast_derived());
}
else
{
resize(other.rows(), other.cols());
m_data = other.m_data;
}
return *this;
}
template<typename OtherDerived>
inline DynamicSparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other)
{
return SparseMatrixBase<DynamicSparseMatrix>::operator=(other.derived());
}
/** Destructor */
inline ~DynamicSparseMatrix() {}
};
template<typename Scalar, int _Flags>
class DynamicSparseMatrix<Scalar,_Flags>::InnerIterator : public SparseVector<Scalar,_Flags>::InnerIterator
{
typedef typename SparseVector<Scalar,_Flags>::InnerIterator Base;
public:
InnerIterator(const DynamicSparseMatrix& mat, int outer)
: Base(mat.m_data[outer]), m_outer(outer)
{}
inline int row() const { return IsRowMajor ? m_outer : Base::index(); }
inline int col() const { return IsRowMajor ? Base::index() : m_outer; }
protected:
const int m_outer;
};
#endif // EIGEN_DYNAMIC_SPARSEMATRIX_H

View File

@ -45,7 +45,7 @@ struct ei_traits<SparseMatrix<_Scalar, _Flags> >
MaxColsAtCompileTime = Dynamic,
Flags = SparseBit | _Flags,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
SupportedAccessPatterns = FullyCoherentAccessPattern
SupportedAccessPatterns = InnerRandomAccessPattern
};
};
@ -91,19 +91,7 @@ class SparseMatrix
{
const int outer = IsRowMajor ? row : col;
const int inner = IsRowMajor ? col : row;
int start = m_outerIndex[outer];
int end = m_outerIndex[outer+1];
if (start==end)
return Scalar(0);
else if (end>0 && inner==m_data.index(end-1))
return m_data.value(end-1);
// ^^ optimization: let's first check if it is the last coefficient
// (very common in high level algorithms)
const int* r = std::lower_bound(&m_data.index(start),&m_data.index(end-1),inner);
const int id = r-&m_data.index(0);
return ((*r==inner) && (id<end)) ? m_data.value(id) : Scalar(0);
return m_data.atInRange(m_outerIndex[outer], m_outerIndex[outer+1], inner);
}
inline Scalar& coeffRef(int row, int col)
@ -115,9 +103,8 @@ class SparseMatrix
int end = m_outerIndex[outer+1];
ei_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
ei_assert(end>start && "coeffRef cannot be called on a zero coefficient");
int* r = std::lower_bound(&m_data.index(start),&m_data.index(end),inner);
const int id = r-&m_data.index(0);
ei_assert((*r==inner) && (id<end) && "coeffRef cannot be called on a zero coefficient");
const int id = m_data.searchLowerIndex(start,end-1,inner);
ei_assert((id<end) && (m_data.index(id)==inner) && "coeffRef cannot be called on a zero coefficient");
return m_data.value(id);
}

View File

@ -69,7 +69,7 @@ template<typename Derived> class SparseMatrixBase
/**< This stores expression \ref flags flags which may or may not be inherited by new expressions
* constructed from this one. See the \ref flags "list of flags".
*/
CoeffReadCost = ei_traits<Derived>::CoeffReadCost,
/**< This is a rough measure of how expensive it is to read one coefficient from
* this expression.
@ -153,7 +153,10 @@ template<typename Derived> class SparseMatrixBase
{
// std::cout << "Derived& operator=(const MatrixBase<OtherDerived>& other)\n";
//const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
ei_assert((!((Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit))) && "the transpose operation is supposed to be handled in SparseMatrix::operator=");
ei_assert(( ((ei_traits<Derived>::SupportedAccessPatterns&OuterRandomAccessPattern)==OuterRandomAccessPattern) ||
(!((Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit)))) &&
"the transpose operation is supposed to be handled in SparseMatrix::operator=");
const int outerSize = other.outerSize();
//typedef typename ei_meta_if<transpose, LinkedVectorMatrix<Scalar,Flags&RowMajorBit>, Derived>::ret TempType;
// thanks to shallow copies, we always eval to a tempary

View File

@ -246,7 +246,7 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
{
// let's transpose the product to get a column x column product
SparseTemporaryType _res(res.cols(), res.rows());
ei_sparse_product_selector<Rhs,Lhs,ResultType,ColMajor,ColMajor,ColMajor>
ei_sparse_product_selector<Rhs,Lhs,SparseTemporaryType,ColMajor,ColMajor,ColMajor>
::run(rhs, lhs, _res);
res = _res.transpose();
}

View File

@ -102,30 +102,36 @@ enum {
template<typename Derived> class SparseMatrixBase;
template<typename _Scalar, int _Flags = 0> class SparseMatrix;
template<typename _Scalar, int _Flags = 0> class DynamicSparseMatrix;
template<typename _Scalar, int _Flags = 0> class SparseVector;
template<typename _Scalar, int _Flags = 0> class MappedSparseMatrix;
template<typename MatrixType> class SparseTranspose;
template<typename MatrixType> class SparseInnerVector;
template<typename Derived> class SparseCwise;
template<typename UnaryOp, typename MatrixType> class SparseCwiseUnaryOp;
template<typename BinaryOp, typename Lhs, typename Rhs> class SparseCwiseBinaryOp;
template<typename ExpressionType, unsigned int Added, unsigned int Removed> class SparseFlagged;
template<typename MatrixType> class SparseTranspose;
template<typename MatrixType> class SparseInnerVector;
template<typename Derived> class SparseCwise;
template<typename UnaryOp, typename MatrixType> class SparseCwiseUnaryOp;
template<typename BinaryOp, typename Lhs, typename Rhs> class SparseCwiseBinaryOp;
template<typename ExpressionType,
unsigned int Added, unsigned int Removed> class SparseFlagged;
template<typename Lhs, typename Rhs> struct ei_sparse_product_mode;
template<typename Lhs, typename Rhs, int ProductMode = ei_sparse_product_mode<Lhs,Rhs>::value> struct SparseProductReturnType;
const int AccessPatternNotSupported = 0x0;
const int AccessPatternSupported = 0x1;
const int CoherentAccessPattern = 0x1;
const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern;
const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern;
const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern;
template<typename MatrixType, int AccessPattern> struct ei_support_access_pattern
{
enum { ret = (int(ei_traits<MatrixType>::SupportedAccessPatterns) & AccessPattern) == AccessPattern
? AccessPatternSupported
: AccessPatternNotSupported
};
};
// const int AccessPatternNotSupported = 0x0;
// const int AccessPatternSupported = 0x1;
//
// template<typename MatrixType, int AccessPattern> struct ei_support_access_pattern
// {
// enum { ret = (int(ei_traits<MatrixType>::SupportedAccessPatterns) & AccessPattern) == AccessPattern
// ? AccessPatternSupported
// : AccessPatternNotSupported
// };
// };
template<typename T> class ei_eval<T,IsSparse>
{

View File

@ -47,12 +47,10 @@ struct ei_traits<SparseVector<_Scalar, _Flags> >
MaxColsAtCompileTime = ColsAtCompileTime,
Flags = SparseBit | _Flags,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
SupportedAccessPatterns = FullyCoherentAccessPattern
SupportedAccessPatterns = InnerRandomAccessPattern
};
};
template<typename _Scalar, int _Flags>
class SparseVector
: public SparseMatrixBase<SparseVector<_Scalar, _Flags> >
@ -89,22 +87,7 @@ class SparseVector
ei_assert((IsColVector ? col : row)==0);
return coeff(IsColVector ? row : col);
}
inline Scalar coeff(int i) const
{
int start = 0;
int end = m_data.size();
if (start==end)
return Scalar(0);
else if (end>0 && i==m_data.index(end-1))
return m_data.value(end-1);
// ^^ optimization: let's first check if it is the last coefficient
// (very common in high level algorithms)
// TODO move this search to ScalarArray
const int* r = std::lower_bound(&m_data.index(start),&m_data.index(end-1),i);
const int id = r-&m_data.index(0);
return ((*r==i) && (id<end)) ? m_data.value(id) : Scalar(0);
}
inline Scalar coeff(int i) const { return m_data.at(i); }
inline Scalar& coeffRef(int row, int col)
{
@ -112,16 +95,15 @@ class SparseVector
return coeff(IsColVector ? row : col);
}
/** \returns a reference to the coefficient value at given index \a i
* This operation involes a log(rho*size) binary search. If the coefficient does not
* exist yet, then a sorted insertion into a sequential buffer is performed.
*
* This insertion might be very costly if the number of nonzeros above \a i is large.
*/
inline Scalar& coeffRef(int i)
{
int start = 0;
int end = m_data.size();
ei_assert(end>=start && "you probably called coeffRef on a non finalized vector");
ei_assert(end>start && "coeffRef cannot be called on a zero coefficient");
int* r = std::lower_bound(&m_data.index(start),&m_data.index(end),i);
const int id = r-&m_data.index(0);
ei_assert((*r==i) && (id<end) && "coeffRef cannot be called on a zero coefficient");
return m_data.value(id);
return m_data.atWithInsertiob(i);
}
public:
@ -301,29 +283,33 @@ class SparseVector<Scalar,_Flags>::InnerIterator
{
public:
InnerIterator(const SparseVector& vec, int outer=0)
: m_vector(vec), m_id(0), m_end(vec.nonZeros())
: m_data(vec.m_data), m_id(0), m_end(m_data.size())
{
ei_assert(outer==0);
}
InnerIterator(const CompressedStorage<Scalar>& data)
: m_data(data), m_id(0), m_end(m_data.size())
{}
template<unsigned int Added, unsigned int Removed>
InnerIterator(const Flagged<SparseVector,Added,Removed>& vec, int outer)
: m_vector(vec._expression()), m_id(0), m_end(m_vector.nonZeros())
: m_data(vec._expression().m_data), m_id(0), m_end(m_data.size())
{}
inline InnerIterator& operator++() { m_id++; return *this; }
inline Scalar value() const { return m_vector.m_data.value(m_id); }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_vector.m_data.value(m_id)); }
inline Scalar value() const { return m_data.value(m_id); }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_data.value(m_id)); }
inline int index() const { return m_vector.m_data.index(m_id); }
inline int index() const { return m_data.index(m_id); }
inline int row() const { return IsColVector ? index() : 0; }
inline int col() const { return IsColVector ? 0 : index(); }
inline operator bool() const { return (m_id < m_end); }
protected:
const SparseVector& m_vector;
const CompressedStorage<Scalar>& m_data;
int m_id;
const int m_end;
};

View File

@ -94,6 +94,49 @@ initSparse(double density,
sparseMat.endFill();
}
template<typename Scalar> void
initSparse(double density,
Matrix<Scalar,Dynamic,Dynamic>& refMat,
DynamicSparseMatrix<Scalar>& sparseMat,
int flags = 0,
std::vector<Vector2i>* zeroCoords = 0,
std::vector<Vector2i>* nonzeroCoords = 0)
{
sparseMat.startFill(int(refMat.rows()*refMat.cols()*density));
for(int j=0; j<refMat.cols(); j++)
{
for(int i=0; i<refMat.rows(); i++)
{
Scalar v = (ei_random<double>(0,1) < density) ? ei_random<Scalar>() : Scalar(0);
if ((flags&ForceNonZeroDiag) && (i==j))
{
v = ei_random<Scalar>()*Scalar(3.);
v = v*v + Scalar(5.);
}
if ((flags & MakeLowerTriangular) && j>i)
v = Scalar(0);
else if ((flags & MakeUpperTriangular) && j<i)
v = Scalar(0);
if ((flags&ForceRealDiag) && (i==j))
v = ei_real(v);
if (v!=Scalar(0))
{
sparseMat.fill(i,j) = v;
if (nonzeroCoords)
nonzeroCoords->push_back(Vector2i(i,j));
}
else if (zeroCoords)
{
zeroCoords->push_back(Vector2i(i,j));
}
refMat(i,j) = v;
}
}
sparseMat.endFill();
}
template<typename Scalar> void
initSparse(double density,
Matrix<Scalar,Dynamic,1>& refVec,

View File

@ -42,14 +42,34 @@ bool test_random_setter(SparseType& sm, const DenseType& ref, const std::vector<
return sm.isApprox(ref);
}
template<typename Scalar> void sparse_basic(int rows, int cols)
template<typename SetterType,typename DenseType, typename T>
bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
{
sm.setZero();
std::vector<Vector2i> remaining = nonzeroCoords;
while(!remaining.empty())
{
int i = ei_random<int>(0,remaining.size()-1);
sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
remaining[i] = remaining.back();
remaining.pop_back();
}
return sm.isApprox(ref);
}
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
{
const int rows = ref.rows();
const int cols = ref.cols();
typedef typename SparseMatrixType::Scalar Scalar;
enum { Flags = SparseMatrixType::Flags };
double density = std::max(8./(rows*cols), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
Scalar eps = 1e-6;
SparseMatrix<Scalar> m(rows, cols);
SparseMatrixType m(rows, cols);
DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
DenseVector vec1 = DenseVector::Random(rows);
Scalar s1 = ei_random<Scalar>();
@ -57,7 +77,7 @@ template<typename Scalar> void sparse_basic(int rows, int cols)
std::vector<Vector2i> zeroCoords;
std::vector<Vector2i> nonzeroCoords;
initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
return;
@ -65,7 +85,8 @@ template<typename Scalar> void sparse_basic(int rows, int cols)
for (int i=0; i<(int)zeroCoords.size(); ++i)
{
VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret)
VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
}
VERIFY_IS_APPROX(m, refMat);
@ -120,7 +141,7 @@ template<typename Scalar> void sparse_basic(int rows, int cols)
// {
// m.setZero();
// VERIFY_IS_NOT_APPROX(m, refMat);
// SparseSetter<SparseMatrix<Scalar>, FullyCoherentAccessPattern> w(m);
// SparseSetter<SparseMatrixType, FullyCoherentAccessPattern> w(m);
// for (int i=0; i<nonzeroCoords.size(); ++i)
// {
// w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y());
@ -132,7 +153,7 @@ template<typename Scalar> void sparse_basic(int rows, int cols)
// {
// m.setZero();
// VERIFY_IS_NOT_APPROX(m, refMat);
// SparseSetter<SparseMatrix<Scalar>, RandomAccessPattern> w(m);
// SparseSetter<SparseMatrixType, RandomAccessPattern> w(m);
// std::vector<Vector2i> remaining = nonzeroCoords;
// while(!remaining.empty())
// {
@ -144,22 +165,22 @@ template<typename Scalar> void sparse_basic(int rows, int cols)
// }
// VERIFY_IS_APPROX(m, refMat);
VERIFY(( test_random_setter<RandomSetter<SparseMatrix<Scalar>, StdMapTraits> >(m,refMat,nonzeroCoords) ));
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) ));
#ifdef _HASH_MAP
VERIFY(( test_random_setter<RandomSetter<SparseMatrix<Scalar>, GnuHashMapTraits> >(m,refMat,nonzeroCoords) ));
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GnuHashMapTraits> >(m,refMat,nonzeroCoords) ));
#endif
#ifdef _DENSE_HASH_MAP_H_
VERIFY(( test_random_setter<RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) ));
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) ));
#endif
#ifdef _SPARSE_HASH_MAP_H_
VERIFY(( test_random_setter<RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) ));
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) ));
#endif
// test fillrand
{
DenseMatrix m1(rows,cols);
m1.setZero();
SparseMatrix<Scalar> m2(rows,cols);
SparseMatrixType m2(rows,cols);
m2.startFill();
for (int j=0; j<cols; ++j)
{
@ -171,23 +192,23 @@ template<typename Scalar> void sparse_basic(int rows, int cols)
}
}
m2.endFill();
std::cerr << m1 << "\n\n" << m2 << "\n";
//std::cerr << m1 << "\n\n" << m2 << "\n";
VERIFY_IS_APPROX(m2,m1);
}
// test RandomSetter
{
SparseMatrix<Scalar> m1(rows,cols), m2(rows,cols);
/*{
SparseMatrixType m1(rows,cols), m2(rows,cols);
DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
initSparse<Scalar>(density, refM1, m1);
{
Eigen::RandomSetter<SparseMatrix<Scalar> > setter(m2);
Eigen::RandomSetter<SparseMatrixType > setter(m2);
for (int j=0; j<m1.outerSize(); ++j)
for (typename SparseMatrix<Scalar>::InnerIterator i(m1,j); i; ++i)
for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i)
setter(i.index(), j) = i.value();
}
VERIFY_IS_APPROX(m1, m2);
}
}*/
// std::cerr << m.transpose() << "\n\n" << refMat.transpose() << "\n\n";
// VERIFY_IS_APPROX(m, refMat);
@ -197,10 +218,10 @@ template<typename Scalar> void sparse_basic(int rows, int cols)
DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
DenseMatrix refM4 = DenseMatrix::Zero(rows, rows);
SparseMatrix<Scalar> m1(rows, rows);
SparseMatrix<Scalar> m2(rows, rows);
SparseMatrix<Scalar> m3(rows, rows);
SparseMatrix<Scalar> m4(rows, rows);
SparseMatrixType m1(rows, rows);
SparseMatrixType m2(rows, rows);
SparseMatrixType m3(rows, rows);
SparseMatrixType m4(rows, rows);
initSparse<Scalar>(density, refM1, m1);
initSparse<Scalar>(density, refM2, m2);
initSparse<Scalar>(density, refM3, m3);
@ -223,7 +244,7 @@ template<typename Scalar> void sparse_basic(int rows, int cols)
// test innerVector()
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
SparseMatrix<Scalar> m2(rows, rows);
SparseMatrixType m2(rows, rows);
initSparse<Scalar>(density, refMat2, m2);
int j0 = ei_random(0,rows-1);
int j1 = ei_random(0,rows-1);
@ -234,7 +255,7 @@ template<typename Scalar> void sparse_basic(int rows, int cols)
// test transpose
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
SparseMatrix<Scalar> m2(rows, rows);
SparseMatrixType m2(rows, rows);
initSparse<Scalar>(density, refMat2, m2);
VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
@ -246,9 +267,9 @@ template<typename Scalar> void sparse_basic(int rows, int cols)
DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows);
DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows);
DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
SparseMatrix<Scalar> m2(rows, rows);
SparseMatrix<Scalar> m3(rows, rows);
SparseMatrix<Scalar> m4(rows, rows);
SparseMatrixType m2(rows, rows);
SparseMatrixType m3(rows, rows);
SparseMatrixType m4(rows, rows);
initSparse<Scalar>(density, refMat2, m2);
initSparse<Scalar>(density, refMat3, m3);
initSparse<Scalar>(density, refMat4, m4);
@ -278,9 +299,9 @@ template<typename Scalar> void sparse_basic(int rows, int cols)
DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
DenseMatrix refS = DenseMatrix::Zero(rows, rows);
SparseMatrix<Scalar> mUp(rows, rows);
SparseMatrix<Scalar> mLo(rows, rows);
SparseMatrix<Scalar> mS(rows, rows);
SparseMatrixType mUp(rows, rows);
SparseMatrixType mLo(rows, rows);
SparseMatrixType mS(rows, rows);
do {
initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
} while (refUp.isZero());
@ -290,7 +311,7 @@ template<typename Scalar> void sparse_basic(int rows, int cols)
refS.diagonal() *= 0.5;
mS = mUp + mLo;
for (int k=0; k<mS.outerSize(); ++k)
for (typename SparseMatrix<Scalar>::InnerIterator it(mS,k); it; ++it)
for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
if (it.index() == k)
it.valueRef() *= 0.5;
@ -307,8 +328,10 @@ template<typename Scalar> void sparse_basic(int rows, int cols)
void test_sparse_basic()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( sparse_basic<double>(8, 8) );
CALL_SUBTEST( sparse_basic<std::complex<double> >(16, 16) );
CALL_SUBTEST( sparse_basic<double>(33, 33) );
// CALL_SUBTEST( sparse_basic(SparseMatrix<double>(8, 8)) );
// CALL_SUBTEST( sparse_basic(SparseMatrix<std::complex<double> >(16, 16)) );
// CALL_SUBTEST( sparse_basic(SparseMatrix<double>(33, 33)) );
CALL_SUBTEST( sparse_basic(DynamicSparseMatrix<double>(8, 8)) );
}
}