added a tough test to check the determinant that currently fails

This commit is contained in:
Gael Guennebaud 2008-04-25 23:13:20 +00:00
parent 6f2c72fb53
commit 173e582e3c
5 changed files with 85 additions and 2 deletions

View File

@ -17,6 +17,7 @@ SET(test_SRCS
smallvectors.cpp
map.cpp
cwiseop.cpp
determinant.cpp
)
QT4_AUTOMOC(${test_SRCS})

71
test/determinant.cpp Normal file
View File

@ -0,0 +1,71 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/LU>
namespace Eigen {
template<typename MatrixType> void nullDeterminant(const MatrixType& m)
{
/* this test covers the following files:
Determinant.h
*/
int rows = m.rows();
int cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
MatrixType d(rows, cols);
// build a ill-conditionned matrix with a nul determinant
d.col(0).setOnes();
d.block(0,1, rows, cols-2).setRandom();
d.col(cols-1).setOnes();
for (int i=0 ; i<rows ; ++i)
d.row(i).block(0,1,1,cols-2) = d.row(i).block(0,1,1,cols-2).normalized();
SquareMatrixType covarianceMatrix = d.transpose() * d;
// std::cout << covarianceMatrix << "\n" << covarianceMatrix.determinant() << "\n";
VERIFY_IS_APPROX(covarianceMatrix.determinant(), Scalar(0));
}
void EigenTest::testDeterminant()
{
for(int i = 0; i < m_repeat; i++) {
nullDeterminant(Matrix<float, 30, 3>());
nullDeterminant(Matrix<double, 30, 3>());
nullDeterminant(Matrix<float, 20, 4>());
nullDeterminant(Matrix<double, 20, 4>());
// nullDeterminant(MatrixXd(20,4));
}
}
} // namespace Eigen

View File

@ -89,6 +89,12 @@ template<typename MatrixType> void linearStructure(const MatrixType& m)
VERIFY_IS_APPROX((m1*s1)(r,c), (m1(r,c))*s1);
if(NumTraits<Scalar>::HasFloatingPoint)
VERIFY_IS_APPROX((m1/s1)(r,c), (m1(r,c))/s1);
// use .block to disable vectorization and compare to the vectorized version
VERIFY_IS_APPROX(m1+m1.block(0,0,rows,cols), m1+m1);
VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), m1.cwiseProduct(m1));
VERIFY_IS_APPROX(m1 - m1.block(0,0,rows,cols), m1 - m1);
VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1);
}
void EigenTest::testLinearStructure()
@ -97,6 +103,7 @@ void EigenTest::testLinearStructure()
linearStructure(Matrix<float, 1, 1>());
linearStructure(Matrix4d());
linearStructure(MatrixXcf(3, 3));
linearStructure(MatrixXf(8, 12));
linearStructure(MatrixXi(8, 12));
linearStructure(MatrixXcd(20, 20));
}

View File

@ -213,6 +213,7 @@ class EigenTest : public QObject
void testSmallVectors();
void testMap();
void testCwiseops();
void testDeterminant();
protected:
int m_repeat;
};

View File

@ -34,6 +34,7 @@ template<typename MatrixType> void product(const MatrixType& m)
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
int rows = m.rows();
int cols = m.cols();
@ -43,7 +44,8 @@ template<typename MatrixType> void product(const MatrixType& m)
MatrixType m1 = MatrixType::random(rows, cols),
m2 = MatrixType::random(rows, cols),
m3(rows, cols),
mzero = MatrixType::zero(rows, cols),
mzero = MatrixType::zero(rows, cols);
SquareMatrixType
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::identity(rows, rows),
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
@ -95,7 +97,8 @@ void EigenTest::testProduct()
product(Matrix<float, 1, 1>());
product(Matrix4d());
product(MatrixXcf(3, 3));
product(MatrixXi(8, 12));
product(MatrixXf(13, 25));
product(MatrixXi(4, 4));
product(MatrixXcd(20, 20));
}