mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Before moving to the new building
This commit is contained in:
parent
f0c34c6822
commit
15f1563533
@ -186,7 +186,6 @@ class SparseLU
|
||||
// Triangular solve
|
||||
Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
|
||||
Map< Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > U (&(X.data()[fsupc]), nsupc, nrhs, OuterStride<>(X.rows()) );
|
||||
// Block<MatrixBase<Dest> > U(X, fsupc, 0, nsupc, nrhs); //FIXME TODO Consider more RHS
|
||||
U = A.template triangularView<Lower>().solve(U);
|
||||
|
||||
// Matrix-vector product
|
||||
@ -536,6 +535,7 @@ void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
|
||||
|
||||
// Eliminate the current column
|
||||
info = LU_pivotL(icol, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
|
||||
eigen_assert(info==0 && " SINGULAR MATRIX");
|
||||
if ( info )
|
||||
{
|
||||
m_info = NumericalIssue;
|
||||
@ -609,6 +609,7 @@ void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
|
||||
|
||||
// Form the L-segment
|
||||
info = LU_pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
|
||||
eigen_assert(info==0 && " SINGULAR MATRIX");
|
||||
if ( info )
|
||||
{
|
||||
std::cerr<< "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT " << info <<std::endl;
|
||||
|
@ -79,6 +79,7 @@ class SuperNodalMatrix
|
||||
m_nzval_colptr = nzval_colptr.data();
|
||||
m_rowind = rowind.data();
|
||||
m_rowind_colptr = rowind_colptr.data();
|
||||
m_nsuper = col_to_sup(n);
|
||||
m_col_to_sup = col_to_sup.data();
|
||||
m_sup_to_col = sup_to_col.data();
|
||||
|
||||
|
@ -133,6 +133,7 @@ int LU_column_bmod(const int jcol, const int nseg, BlockScalarVector& dense, Sca
|
||||
// Dense triangular solve -- start effective triangle
|
||||
luptr += nsupr * no_zeros + no_zeros;
|
||||
// Form Eigen matrix and vector
|
||||
// std::cout<< "jcol " << jcol << " rows " << segsize << std::endl;
|
||||
Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(lusup.data()[luptr]), segsize, segsize, OuterStride<>(nsupr) );
|
||||
VectorBlock<ScalarVector> u(tempv, 0, segsize);
|
||||
|
||||
|
@ -123,7 +123,7 @@ void LU_pruneL(const int jcol, const IndexVector& perm_r, const int pivrow, cons
|
||||
if (perm_r(lsub(kmax)) == IND_EMPTY)
|
||||
kmax--;
|
||||
else if ( perm_r(lsub(kmin)) != IND_EMPTY)
|
||||
kmin--;
|
||||
kmin++;
|
||||
else
|
||||
{
|
||||
// kmin below pivrow (not yet pivoted), and kmax
|
||||
|
@ -52,6 +52,7 @@ int main(int argc, char **args)
|
||||
}
|
||||
|
||||
/* Compute the factorization */
|
||||
solver.isSymmetric(true);
|
||||
solver.compute(A);
|
||||
|
||||
solver._solve(b, x);
|
||||
|
Loading…
Reference in New Issue
Block a user