mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
Add unit test for non symmetric generalized eigenvalues
This commit is contained in:
parent
a20d2ec1c0
commit
15890c304e
@ -1,7 +1,7 @@
|
|||||||
// This file is part of Eigen, a lightweight C++ template library
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
// for linear algebra.
|
// for linear algebra.
|
||||||
//
|
//
|
||||||
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
// Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||||
//
|
//
|
||||||
// This Source Code Form is subject to the terms of the Mozilla
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
@ -10,6 +10,7 @@
|
|||||||
#include "main.h"
|
#include "main.h"
|
||||||
#include <limits>
|
#include <limits>
|
||||||
#include <Eigen/Eigenvalues>
|
#include <Eigen/Eigenvalues>
|
||||||
|
#include <Eigen/LU>
|
||||||
|
|
||||||
template<typename MatrixType> void generalized_eigensolver_real(const MatrixType& m)
|
template<typename MatrixType> void generalized_eigensolver_real(const MatrixType& m)
|
||||||
{
|
{
|
||||||
@ -21,6 +22,7 @@ template<typename MatrixType> void generalized_eigensolver_real(const MatrixType
|
|||||||
Index cols = m.cols();
|
Index cols = m.cols();
|
||||||
|
|
||||||
typedef typename MatrixType::Scalar Scalar;
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef std::complex<Scalar> ComplexScalar;
|
||||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||||
|
|
||||||
MatrixType a = MatrixType::Random(rows,cols);
|
MatrixType a = MatrixType::Random(rows,cols);
|
||||||
@ -31,14 +33,28 @@ template<typename MatrixType> void generalized_eigensolver_real(const MatrixType
|
|||||||
MatrixType spdB = b.adjoint() * b + b1.adjoint() * b1;
|
MatrixType spdB = b.adjoint() * b + b1.adjoint() * b1;
|
||||||
|
|
||||||
// lets compare to GeneralizedSelfAdjointEigenSolver
|
// lets compare to GeneralizedSelfAdjointEigenSolver
|
||||||
GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB);
|
{
|
||||||
GeneralizedEigenSolver<MatrixType> eig(spdA, spdB);
|
GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB);
|
||||||
|
GeneralizedEigenSolver<MatrixType> eig(spdA, spdB);
|
||||||
|
|
||||||
VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0);
|
VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0);
|
||||||
|
|
||||||
VectorType realEigenvalues = eig.eigenvalues().real();
|
VectorType realEigenvalues = eig.eigenvalues().real();
|
||||||
std::sort(realEigenvalues.data(), realEigenvalues.data()+realEigenvalues.size());
|
std::sort(realEigenvalues.data(), realEigenvalues.data()+realEigenvalues.size());
|
||||||
VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues());
|
VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues());
|
||||||
|
}
|
||||||
|
|
||||||
|
// non symmetric case:
|
||||||
|
{
|
||||||
|
GeneralizedEigenSolver<MatrixType> eig(a,b);
|
||||||
|
for(Index k=0; k<cols; ++k)
|
||||||
|
{
|
||||||
|
Matrix<ComplexScalar,Dynamic,Dynamic> tmp = (eig.betas()(k)*a).template cast<ComplexScalar>() - eig.alphas()(k)*b;
|
||||||
|
if(tmp.norm()>(std::numeric_limits<Scalar>::min)())
|
||||||
|
tmp /= tmp.norm();
|
||||||
|
VERIFY_IS_MUCH_SMALLER_THAN( std::abs(tmp.determinant()), Scalar(1) );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// regression test for bug 1098
|
// regression test for bug 1098
|
||||||
{
|
{
|
||||||
@ -57,7 +73,7 @@ void test_eigensolver_generalized_real()
|
|||||||
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
||||||
CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(s,s)) );
|
CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(s,s)) );
|
||||||
|
|
||||||
// some trivial but implementation-wise tricky cases
|
// some trivial but implementation-wise special cases
|
||||||
CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(1,1)) );
|
CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(1,1)) );
|
||||||
CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(2,2)) );
|
CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(2,2)) );
|
||||||
CALL_SUBTEST_3( generalized_eigensolver_real(Matrix<double,1,1>()) );
|
CALL_SUBTEST_3( generalized_eigensolver_real(Matrix<double,1,1>()) );
|
||||||
|
Loading…
Reference in New Issue
Block a user