mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
another nist test ('average' difficulty), which fails. It is disabled until
further notice.
This commit is contained in:
parent
c7a72958ba
commit
1045bc17f5
@ -851,7 +851,6 @@ void testLmdif()
|
||||
VERIFY_IS_APPROX(fjac[(i-1)*ldfjac+j-1]*covfac, cov_ref[(i-1)*3+(j-1)]);
|
||||
}
|
||||
|
||||
|
||||
struct misra1a_functor {
|
||||
static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag)
|
||||
{
|
||||
@ -862,12 +861,12 @@ struct misra1a_functor {
|
||||
assert(m==14);
|
||||
assert(n==2);
|
||||
assert(ldfjac==14);
|
||||
if (iflag != 2) {// compute fvec at x
|
||||
if (iflag != 2) {// compute fvec at b
|
||||
for(i=0; i<14; i++) {
|
||||
fvec[i] = b[0]*(1.-exp(-b[1]*x[i])) - y[i] ;
|
||||
}
|
||||
}
|
||||
else { // compute fjac at x
|
||||
else { // compute fjac at b
|
||||
for(i=0; i<14; i++) {
|
||||
fjac[i+ldfjac*0] = (1.-exp(-b[1]*x[i]));
|
||||
fjac[i+ldfjac*1] = (b[0]*x[i]*exp(-b[1]*x[i]));
|
||||
@ -920,12 +919,108 @@ void testNistMisra1a(void)
|
||||
// check x
|
||||
VERIFY_IS_APPROX(x[0], 2.3894212918E+02);
|
||||
VERIFY_IS_APPROX(x[1], 5.5015643181E-04);
|
||||
}
|
||||
|
||||
struct hahn1_functor {
|
||||
static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag)
|
||||
{
|
||||
static const double _x[236] = { .591E0 , 1.547E0 , 2.902E0 , 2.894E0 , 4.703E0 , 6.307E0 , 7.03E0 , 7.898E0 , 9.470E0 , 9.484E0 , 10.072E0 , 10.163E0 , 11.615E0 , 12.005E0 , 12.478E0 , 12.982E0 , 12.970E0 , 13.926E0 , 14.452E0 , 14.404E0 , 15.190E0 , 15.550E0 , 15.528E0 , 15.499E0 , 16.131E0 , 16.438E0 , 16.387E0 , 16.549E0 , 16.872E0 , 16.830E0 , 16.926E0 , 16.907E0 , 16.966E0 , 17.060E0 , 17.122E0 , 17.311E0 , 17.355E0 , 17.668E0 , 17.767E0 , 17.803E0 , 17.765E0 , 17.768E0 , 17.736E0 , 17.858E0 , 17.877E0 , 17.912E0 , 18.046E0 , 18.085E0 , 18.291E0 , 18.357E0 , 18.426E0 , 18.584E0 , 18.610E0 , 18.870E0 , 18.795E0 , 19.111E0 , .367E0 , .796E0 , 0.892E0 , 1.903E0 , 2.150E0 , 3.697E0 , 5.870E0 , 6.421E0 , 7.422E0 , 9.944E0 , 11.023E0 , 11.87E0 , 12.786E0 , 14.067E0 , 13.974E0 , 14.462E0 , 14.464E0 , 15.381E0 , 15.483E0 , 15.59E0 , 16.075E0 , 16.347E0 , 16.181E0 , 16.915E0 , 17.003E0 , 16.978E0 , 17.756E0 , 17.808E0 , 17.868E0 , 18.481E0 , 18.486E0 , 19.090E0 , 16.062E0 , 16.337E0 , 16.345E0 , 16.388E0 , 17.159E0 , 17.116E0 , 17.164E0 , 17.123E0 , 17.979E0 , 17.974E0 , 18.007E0 , 17.993E0 , 18.523E0 , 18.669E0 , 18.617E0 , 19.371E0 , 19.330E0 , 0.080E0 , 0.248E0 , 1.089E0 , 1.418E0 , 2.278E0 , 3.624E0 , 4.574E0 , 5.556E0 , 7.267E0 , 7.695E0 , 9.136E0 , 9.959E0 , 9.957E0 , 11.600E0 , 13.138E0 , 13.564E0 , 13.871E0 , 13.994E0 , 14.947E0 , 15.473E0 , 15.379E0 , 15.455E0 , 15.908E0 , 16.114E0 , 17.071E0 , 17.135E0 , 17.282E0 , 17.368E0 , 17.483E0 , 17.764E0 , 18.185E0 , 18.271E0 , 18.236E0 , 18.237E0 , 18.523E0 , 18.627E0 , 18.665E0 , 19.086E0 , 0.214E0 , 0.943E0 , 1.429E0 , 2.241E0 , 2.951E0 , 3.782E0 , 4.757E0 , 5.602E0 , 7.169E0 , 8.920E0 , 10.055E0 , 12.035E0 , 12.861E0 , 13.436E0 , 14.167E0 , 14.755E0 , 15.168E0 , 15.651E0 , 15.746E0 , 16.216E0 , 16.445E0 , 16.965E0 , 17.121E0 , 17.206E0 , 17.250E0 , 17.339E0 , 17.793E0 , 18.123E0 , 18.49E0 , 18.566E0 , 18.645E0 , 18.706E0 , 18.924E0 , 19.1E0 , 0.375E0 , 0.471E0 , 1.504E0 , 2.204E0 , 2.813E0 , 4.765E0 , 9.835E0 , 10.040E0 , 11.946E0 , 12.596E0 , 13.303E0 , 13.922E0 , 14.440E0 , 14.951E0 , 15.627E0 , 15.639E0 , 15.814E0 , 16.315E0 , 16.334E0 , 16.430E0 , 16.423E0 , 17.024E0 , 17.009E0 , 17.165E0 , 17.134E0 , 17.349E0 , 17.576E0 , 17.848E0 , 18.090E0 , 18.276E0 , 18.404E0 , 18.519E0 , 19.133E0 , 19.074E0 , 19.239E0 , 19.280E0 , 19.101E0 , 19.398E0 , 19.252E0 , 19.89E0 , 20.007E0 , 19.929E0 , 19.268E0 , 19.324E0 , 20.049E0 , 20.107E0 , 20.062E0 , 20.065E0 , 19.286E0 , 19.972E0 , 20.088E0 , 20.743E0 , 20.83E0 , 20.935E0 , 21.035E0 , 20.93E0 , 21.074E0 , 21.085E0 , 20.935E0 };
|
||||
static const double _y[236] = { 24.41E0 , 34.82E0 , 44.09E0 , 45.07E0 , 54.98E0 , 65.51E0 , 70.53E0 , 75.70E0 , 89.57E0 , 91.14E0 , 96.40E0 , 97.19E0 , 114.26E0 , 120.25E0 , 127.08E0 , 133.55E0 , 133.61E0 , 158.67E0 , 172.74E0 , 171.31E0 , 202.14E0 , 220.55E0 , 221.05E0 , 221.39E0 , 250.99E0 , 268.99E0 , 271.80E0 , 271.97E0 , 321.31E0 , 321.69E0 , 330.14E0 , 333.03E0 , 333.47E0 , 340.77E0 , 345.65E0 , 373.11E0 , 373.79E0 , 411.82E0 , 419.51E0 , 421.59E0 , 422.02E0 , 422.47E0 , 422.61E0 , 441.75E0 , 447.41E0 , 448.7E0 , 472.89E0 , 476.69E0 , 522.47E0 , 522.62E0 , 524.43E0 , 546.75E0 , 549.53E0 , 575.29E0 , 576.00E0 , 625.55E0 , 20.15E0 , 28.78E0 , 29.57E0 , 37.41E0 , 39.12E0 , 50.24E0 , 61.38E0 , 66.25E0 , 73.42E0 , 95.52E0 , 107.32E0 , 122.04E0 , 134.03E0 , 163.19E0 , 163.48E0 , 175.70E0 , 179.86E0 , 211.27E0 , 217.78E0 , 219.14E0 , 262.52E0 , 268.01E0 , 268.62E0 , 336.25E0 , 337.23E0 , 339.33E0 , 427.38E0 , 428.58E0 , 432.68E0 , 528.99E0 , 531.08E0 , 628.34E0 , 253.24E0 , 273.13E0 , 273.66E0 , 282.10E0 , 346.62E0 , 347.19E0 , 348.78E0 , 351.18E0 , 450.10E0 , 450.35E0 , 451.92E0 , 455.56E0 , 552.22E0 , 553.56E0 , 555.74E0 , 652.59E0 , 656.20E0 , 14.13E0 , 20.41E0 , 31.30E0 , 33.84E0 , 39.70E0 , 48.83E0 , 54.50E0 , 60.41E0 , 72.77E0 , 75.25E0 , 86.84E0 , 94.88E0 , 96.40E0 , 117.37E0 , 139.08E0 , 147.73E0 , 158.63E0 , 161.84E0 , 192.11E0 , 206.76E0 , 209.07E0 , 213.32E0 , 226.44E0 , 237.12E0 , 330.90E0 , 358.72E0 , 370.77E0 , 372.72E0 , 396.24E0 , 416.59E0 , 484.02E0 , 495.47E0 , 514.78E0 , 515.65E0 , 519.47E0 , 544.47E0 , 560.11E0 , 620.77E0 , 18.97E0 , 28.93E0 , 33.91E0 , 40.03E0 , 44.66E0 , 49.87E0 , 55.16E0 , 60.90E0 , 72.08E0 , 85.15E0 , 97.06E0 , 119.63E0 , 133.27E0 , 143.84E0 , 161.91E0 , 180.67E0 , 198.44E0 , 226.86E0 , 229.65E0 , 258.27E0 , 273.77E0 , 339.15E0 , 350.13E0 , 362.75E0 , 371.03E0 , 393.32E0 , 448.53E0 , 473.78E0 , 511.12E0 , 524.70E0 , 548.75E0 , 551.64E0 , 574.02E0 , 623.86E0 , 21.46E0 , 24.33E0 , 33.43E0 , 39.22E0 , 44.18E0 , 55.02E0 , 94.33E0 , 96.44E0 , 118.82E0 , 128.48E0 , 141.94E0 , 156.92E0 , 171.65E0 , 190.00E0 , 223.26E0 , 223.88E0 , 231.50E0 , 265.05E0 , 269.44E0 , 271.78E0 , 273.46E0 , 334.61E0 , 339.79E0 , 349.52E0 , 358.18E0 , 377.98E0 , 394.77E0 , 429.66E0 , 468.22E0 , 487.27E0 , 519.54E0 , 523.03E0 , 612.99E0 , 638.59E0 , 641.36E0 , 622.05E0 , 631.50E0 , 663.97E0 , 646.9E0 , 748.29E0 , 749.21E0 , 750.14E0 , 647.04E0 , 646.89E0 , 746.9E0 , 748.43E0 , 747.35E0 , 749.27E0 , 647.61E0 , 747.78E0 , 750.51E0 , 851.37E0 , 845.97E0 , 847.54E0 , 849.93E0 , 851.61E0 , 849.75E0 , 850.98E0 , 848.23E0};
|
||||
int i;
|
||||
|
||||
// static int called=0; printf("call hahn1_functor with iflag=%d, called=%d\n", iflag, called); if (iflag==1) called++;
|
||||
assert(m==236);
|
||||
assert(n==7);
|
||||
assert(ldfjac==236);
|
||||
if (iflag != 2) {// compute fvec at x
|
||||
for(i=0; i<236; i++) {
|
||||
double x=_x[i], xx=x*x, xxx=xx*x;
|
||||
fvec[i] = (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) / (1.+b[4]*x+b[5]*xx+b[6]*xxx) - _y[i];
|
||||
}
|
||||
}
|
||||
else { // compute fjac at x
|
||||
for(i=0; i<236; i++) {
|
||||
double x=_x[i], xx=x*x, xxx=xx*x;
|
||||
double fact = 1./(1.+b[4]*x+b[5]*xx+b[6]*xxx);
|
||||
fjac[i+ldfjac*0] = 1.*fact;
|
||||
fjac[i+ldfjac*1] = x*fact;
|
||||
fjac[i+ldfjac*2] = xx*fact;
|
||||
fjac[i+ldfjac*3] = xxx*fact;
|
||||
fact = - (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) * fact * fact;
|
||||
fjac[i+ldfjac*4] = x*fact;
|
||||
fjac[i+ldfjac*5] = xx*fact;
|
||||
fjac[i+ldfjac*6] = xxx*fact;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
// http://www.itl.nist.gov/div898/strd/nls/data/hahn1.shtml
|
||||
void testNistHahn1(void)
|
||||
{
|
||||
const int m=236, n=7;
|
||||
int info, nfev, njev;
|
||||
|
||||
Eigen::VectorXd x(n), fvec(m), wa1, diag;
|
||||
Eigen::MatrixXd fjac;
|
||||
VectorXi ipvt;
|
||||
|
||||
/*
|
||||
* First try
|
||||
*/
|
||||
x<< 10., -1., .05, -.00001, -.05, .001, -.000001;
|
||||
// do the computation
|
||||
info = ei_lmder<hahn1_functor, double>(x, fvec, nfev, njev, fjac, ipvt, wa1, diag);
|
||||
|
||||
// check return value
|
||||
printf("info=%d, f,j: %d, %d\n", info, nfev, njev);
|
||||
printf("norm2 = %.50g\n", fvec.squaredNorm());
|
||||
std::cout << x << std::endl;
|
||||
VERIFY( 1 == info);
|
||||
VERIFY( 33== nfev);
|
||||
VERIFY( 22== njev);
|
||||
// check norm^2
|
||||
VERIFY_IS_APPROX(fvec.squaredNorm(), 1.5324382854E+00);
|
||||
// check x
|
||||
VERIFY_IS_APPROX(x[0], 1.0776351733E+00 );
|
||||
VERIFY_IS_APPROX(x[1],-1.2269296921E-01 );
|
||||
VERIFY_IS_APPROX(x[2], 4.0863750610E-03 );
|
||||
VERIFY_IS_APPROX(x[3],-1.4262662514E-06 );
|
||||
VERIFY_IS_APPROX(x[4],-5.7609940901E-03 );
|
||||
VERIFY_IS_APPROX(x[5], 2.4053735503E-04 );
|
||||
VERIFY_IS_APPROX(x[6],-1.2314450199E-07 );
|
||||
|
||||
/*
|
||||
* Second try
|
||||
*/
|
||||
x<< .1, -.1, .005, -.000001, -.005, .0001, -.0000001;
|
||||
// do the computation
|
||||
info = ei_lmder<misra1a_functor, double>(x, fvec, nfev, njev, fjac, ipvt, wa1, diag);
|
||||
|
||||
// check return value
|
||||
printf("info=%d, f,j: %d, %d\n", info, nfev, njev);
|
||||
VERIFY( 1 == info);
|
||||
VERIFY( 5 == nfev);
|
||||
VERIFY( 4 == njev);
|
||||
// check norm^2
|
||||
VERIFY_IS_APPROX(fvec.squaredNorm(), 1.2455138894E-01);
|
||||
VERIFY_IS_APPROX(fvec.squaredNorm(), 1.5324382854E+00);
|
||||
// check x
|
||||
VERIFY_IS_APPROX(x[0], 1.0776351733E+00 );
|
||||
VERIFY_IS_APPROX(x[1],-1.2269296921E-01 );
|
||||
VERIFY_IS_APPROX(x[2], 4.0863750610E-03 );
|
||||
VERIFY_IS_APPROX(x[3],-1.4262662514E-06 );
|
||||
VERIFY_IS_APPROX(x[4],-5.7609940901E-03 );
|
||||
VERIFY_IS_APPROX(x[5], 2.4053735503E-04 );
|
||||
VERIFY_IS_APPROX(x[6],-1.2314450199E-07 );
|
||||
|
||||
}
|
||||
|
||||
void test_NonLinear()
|
||||
{
|
||||
CALL_SUBTEST(testNistMisra1a());
|
||||
// CALL_SUBTEST(testNistHahn1());
|
||||
|
||||
CALL_SUBTEST(testChkder());
|
||||
CALL_SUBTEST(testLmder1());
|
||||
@ -939,3 +1034,4 @@ void test_NonLinear()
|
||||
CALL_SUBTEST(testLmdif1());
|
||||
CALL_SUBTEST(testLmdif());
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user