* split Product to a DiagonalProduct template specialization

to optimize matrix-diag and diag-matrix products without
  making Product over complicated.
* compilation fixes in Tridiagonalization and HessenbergDecomposition
  in the case of 2x2 matrices.
* added an Orientation2D small class with similar interface than Quaternion
  (used by Transform to handle 2D and 3D orientations seamlessly)
* added a couple of features in Transform.
This commit is contained in:
Gael Guennebaud 2008-06-15 11:54:18 +00:00
parent fbbd8afe30
commit 0ee6b08128
9 changed files with 374 additions and 51 deletions

View File

@ -41,6 +41,7 @@ namespace Eigen {
#include "src/Core/CwiseNullaryOp.h"
#include "src/Core/InverseProduct.h"
#include "src/Core/Product.h"
#include "src/Core/DiagonalProduct.h"
#include "src/Core/Block.h"
#include "src/Core/Minor.h"
#include "src/Core/Transpose.h"

View File

@ -0,0 +1,108 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DIAGONALPRODUCT_H
#define EIGEN_DIAGONALPRODUCT_H
template<typename Lhs, typename Rhs>
struct ei_traits<Product<Lhs, Rhs, DiagonalProduct> >
{
typedef typename Lhs::Scalar Scalar;
typedef typename ei_nested<Lhs>::type LhsNested;
typedef typename ei_nested<Rhs>::type RhsNested;
typedef typename ei_unref<LhsNested>::type _LhsNested;
typedef typename ei_unref<RhsNested>::type _RhsNested;
enum {
LhsFlags = _LhsNested::Flags,
RhsFlags = _RhsNested::Flags,
RowsAtCompileTime = Lhs::RowsAtCompileTime,
ColsAtCompileTime = Rhs::ColsAtCompileTime,
MaxRowsAtCompileTime = Lhs::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Rhs::MaxColsAtCompileTime,
_RhsVectorizable = (RhsFlags & RowMajorBit) && (RhsFlags & VectorizableBit)
&& (ColsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
_LhsVectorizable = (!(LhsFlags & RowMajorBit)) && (LhsFlags & VectorizableBit)
&& (RowsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
_LostBits = ~(((RhsFlags & RowMajorBit) && (!_LhsVectorizable) ? 0 : RowMajorBit)
| ((RowsAtCompileTime == Dynamic || ColsAtCompileTime == Dynamic) ? 0 : LargeBit)),
Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & _LostBits)
| (_LhsVectorizable || _RhsVectorizable ? VectorizableBit : 0),
CoeffReadCost = NumTraits<Scalar>::MulCost + _LhsNested::CoeffReadCost + _RhsNested::CoeffReadCost
};
};
template<typename Lhs, typename Rhs> class Product<Lhs, Rhs, DiagonalProduct> : ei_no_assignment_operator,
public MatrixBase<Product<Lhs, Rhs, DiagonalProduct> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
typedef typename ei_traits<Product>::LhsNested LhsNested;
typedef typename ei_traits<Product>::RhsNested RhsNested;
typedef typename ei_traits<Product>::_LhsNested _LhsNested;
typedef typename ei_traits<Product>::_RhsNested _RhsNested;
enum {
PacketSize = ei_packet_traits<Scalar>::size
};
inline Product(const Lhs& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{
ei_assert(lhs.cols() == rhs.rows());
}
private:
inline int _rows() const { return m_lhs.rows(); }
inline int _cols() const { return m_rhs.cols(); }
const Scalar _coeff(int row, int col) const
{
int unique = ((Rhs::Flags&Diagonal)==Diagonal) ? col : row;
return m_lhs.coeff(row, unique) * m_rhs.coeff(unique, col);
}
template<int LoadMode>
const PacketScalar _packetCoeff(int row, int col) const
{
if ((Rhs::Flags&Diagonal)==Diagonal)
{
ei_assert((_LhsNested::Flags&RowMajorBit)==0);
return ei_pmul(m_lhs.template packetCoeff<LoadMode>(row, col), ei_pset1(m_rhs.coeff(col, col)));
}
else
{
ei_assert(_RhsNested::Flags&RowMajorBit);
return ei_pmul(ei_pset1(m_lhs.coeff(row, row)), m_rhs.template packetCoeff<LoadMode>(row, col));
}
}
protected:
const LhsNested m_lhs;
const RhsNested m_rhs;
};
#endif // EIGEN_DIAGONALPRODUCT_H

View File

@ -144,11 +144,12 @@ struct ei_packet_product_impl<false, Index, Dynamic, Lhs, Rhs, PacketScalar>
*/
template<typename Lhs, typename Rhs> struct ei_product_eval_mode
{
enum{ value = Lhs::MaxRowsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
&& Rhs::MaxColsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
&& Lhs::MaxColsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
&& (Rhs::Flags&Diagonal)!=Diagonal
? CacheFriendlyProduct : NormalProduct };
enum{ value = ((Rhs::Flags&Diagonal)==Diagonal) || ((Lhs::Flags&Diagonal)==Diagonal)
? DiagonalProduct
: Lhs::MaxRowsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
&& Rhs::MaxColsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
&& Lhs::MaxColsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
? CacheFriendlyProduct : NormalProduct };
};
template<typename T> class ei_product_eval_to_column_major
@ -265,44 +266,25 @@ template<typename Lhs, typename Rhs, int EvalMode> class Product : ei_no_assignm
const Scalar _coeff(int row, int col) const
{
if ((Rhs::Flags&Diagonal)==Diagonal)
{
return m_lhs.coeff(row, col) * m_rhs.coeff(col, col);
}
else if ((Lhs::Flags&Diagonal)==Diagonal)
{
return m_lhs.coeff(row, row) * m_rhs.coeff(row, col);
}
else
{
Scalar res;
const bool unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT;
ei_product_impl<unroll ? Lhs::ColsAtCompileTime-1 : Dynamic,
unroll ? Lhs::ColsAtCompileTime : Dynamic,
_LhsNested, _RhsNested>
::run(row, col, m_lhs, m_rhs, res);
return res;
}
Scalar res;
const bool unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT;
ei_product_impl<unroll ? Lhs::ColsAtCompileTime-1 : Dynamic,
unroll ? Lhs::ColsAtCompileTime : Dynamic,
_LhsNested, _RhsNested>
::run(row, col, m_lhs, m_rhs, res);
return res;
}
template<int LoadMode>
const PacketScalar _packetCoeff(int row, int col) const
{
if ((Rhs::Flags&Diagonal)==Diagonal)
{
ei_assert((_LhsNested::Flags&RowMajorBit)==0);
return ei_pmul(m_lhs.template packetCoeff<LoadMode>(row, col), ei_pset1(m_rhs.coeff(col, col)));
}
else
{
const bool unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT;
PacketScalar res;
ei_packet_product_impl<Flags&RowMajorBit ? true : false, Lhs::ColsAtCompileTime-1,
unroll ? Lhs::ColsAtCompileTime : Dynamic,
_LhsNested, _RhsNested, PacketScalar>
::run(row, col, m_lhs, m_rhs, res);
return res;
}
const bool unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT;
PacketScalar res;
ei_packet_product_impl<Flags&RowMajorBit ? true : false, Lhs::ColsAtCompileTime-1,
unroll ? Lhs::ColsAtCompileTime : Dynamic,
_LhsNested, _RhsNested, PacketScalar>
::run(row, col, m_lhs, m_rhs, res);
return res;
}
template<typename Lhs_, typename Rhs_, int EvalMode_, typename DestDerived_, bool DirectAccess_>

View File

@ -52,8 +52,6 @@ struct ei_traits<Transpose<MatrixType> >
& ~( Like1DArrayBit | LowerTriangularBit | UpperTriangularBit)
| (int(_MatrixTypeNested::Flags)&UpperTriangularBit ? LowerTriangularBit : 0)
| (int(_MatrixTypeNested::Flags)&LowerTriangularBit ? UpperTriangularBit : 0),
// Note that the above test cannot be simplified using ^ because a diagonal matrix
// has both LowerTriangularBit and UpperTriangularBit and both must be preserved.
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
};
};

View File

@ -80,7 +80,7 @@ const unsigned int Like1DArrayBit = 0x20;
/** \ingroup flags
*
* means all diagonal coefficients are equal to 0 */
const unsigned int ZeroDiagBit = 0x40;
const unsigned int ZeroDiagBit = 0x40;
/** \ingroup flags
*
@ -140,7 +140,7 @@ enum { Aligned=0, UnAligned=1 };
enum { ConditionalJumpCost = 5 };
enum CornerType { TopLeft, TopRight, BottomLeft, BottomRight };
enum DirectionType { Vertical, Horizontal };
enum ProductEvaluationMode { NormalProduct, CacheFriendlyProduct, LazyProduct};
enum ProductEvaluationMode { NormalProduct, CacheFriendlyProduct, DiagonalProduct, LazyProduct};
#endif // EIGEN_CONSTANTS_H

View File

@ -25,6 +25,94 @@
#ifndef EIGEN_TRANSFORM_H
#define EIGEN_TRANSFORM_H
/** \class Orientation2D
*
* \brief Represents an orientation/rotation in a 2 dimensional space.
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
*
* This class is equivalent to a single scalar representating the rotation angle
* in radian with some additional features such as the conversion from/to
* rotation matrix. Moreover this class aims to provide a similar interface
* to Quaternion in order to facilitate the writting of generic algorithm
* dealing with rotations.
*
* \sa class Quaternion, class Transform
*/
template<typename _Scalar>
class Orientation2D
{
public:
enum { Dim = 2 };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Matrix<Scalar,2,2> Matrix2;
protected:
Scalar m_angle;
public:
inline Orientation2D(Scalar a) : m_angle(a) {}
inline operator Scalar& () { return m_angle; }
inline operator Scalar () const { return m_angle; }
template<typename Derived>
Orientation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
Matrix2 toRotationMatrix(void) const;
Orientation2D slerp(Scalar t, const Orientation2D& other) const;
};
/** returns the default type used to represent an orientation.
*/
template<typename Scalar, int Dim>
struct ei_get_orientation_type;
template<typename Scalar>
struct ei_get_orientation_type<Scalar,2>
{ typedef Orientation2D<Scalar> type; };
template<typename Scalar>
struct ei_get_orientation_type<Scalar,3>
{ typedef Quaternion<Scalar> type; };
/** Set \c *this from a 2x2 rotation matrix \a mat.
* In other words, this function extract the rotation angle
* from the rotation matrix.
*/
template<typename Scalar>
template<typename Derived>
Orientation2D<Scalar>& Orientation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
{
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,you_did_a_programming_error);
m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0));
return *this;
}
/** Constructs and \returns an equivalent 2x2 rotation matrix.
*/
template<typename Scalar>
typename Orientation2D<Scalar>::Matrix2
Orientation2D<Scalar>::toRotationMatrix(void) const
{
Scalar sinA = ei_sin(m_angle);
Scalar cosA = ei_cos(m_angle);
return Matrix2(cosA, -sinA, sinA, cosA);
}
/** \returns the spherical interpolation between \c *this and \a other using
* parameter \a t. It is equivalent to a linear interpolation.
*/
template<typename Scalar>
Orientation2D<Scalar>
Orientation2D<Scalar>::slerp(Scalar t, const Orientation2D& other) const
{
return m_angle * (1-t) + t * other;
}
/** \class Transform
*
* \brief Represents an homogeneous transformation in a N dimensional space
@ -32,6 +120,11 @@
* \param _Scalar the scalar type, i.e., the type of the coefficients
* \param _Dim the dimension of the space
*
* The homography is internally represented and stored as a (Dim+1)^2 matrix which
* is available through the matrix() method.
*
* Conversion methods from/to Qt's QMatrix are available if the preprocessor token
* EIGEN_QT_SUPPORT is defined.
*
*/
template<typename _Scalar, int _Dim>
@ -47,6 +140,7 @@ public:
typedef Block<MatrixType,Dim,Dim> AffineMatrixRef;
typedef Matrix<Scalar,Dim,1> VectorType;
typedef Block<MatrixType,Dim,1> VectorRef;
typedef typename ei_get_orientation_type<Scalar,Dim>::type Orientation;
protected:
@ -59,13 +153,42 @@ protected:
public:
/** Default constructor without initialization of the coefficients. */
Transform() { }
inline Transform(const Transform& other)
{ m_matrix = other.m_matrix; }
inline Transform& operator=(const Transform& other)
{ m_matrix = other.m_matrix; }
template<typename OtherDerived>
inline explicit Transform(const MatrixBase<OtherDerived>& other)
{ m_matrix = other; }
template<typename OtherDerived>
inline Transform& operator=(const MatrixBase<OtherDerived>& other)
{ m_matrix = other; }
#ifdef EIGEN_QT_SUPPORT
inline Transform(const QMatrix& other);
inline Transform& operator=(const QMatrix& other);
inline QMatrix toQMatrix(void) const;
#endif
/** \returns a read-only expression of the transformation matrix */
inline const MatrixType matrix() const { return m_matrix; }
/** \returns a writable expression of the transformation matrix */
inline MatrixType matrix() { return m_matrix; }
/** \returns a read-only expression of the affine (linear) part of the transformation */
inline const AffineMatrixRef affine() const { return m_matrix.template block<Dim,Dim>(0,0); }
/** \returns a writable expression of the affine (linear) part of the transformation */
inline AffineMatrixRef affine() { return m_matrix.template block<Dim,Dim>(0,0); }
/** \returns a read-only expression of the translation vector of the transformation */
inline const VectorRef translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
/** \returns a writable expression of the translation vector of the transformation */
inline VectorRef translation() { return m_matrix.template block<Dim,1>(0,Dim); }
template<typename OtherDerived>
@ -78,6 +201,11 @@ public:
const typename ProductReturnType<OtherDerived>::Type
operator * (const MatrixBase<OtherDerived> &other) const;
/** Contatenates two transformations */
Product<MatrixType,MatrixType>
operator * (const Transform& other) const
{ return m_matrix * other.matrix(); }
void setIdentity() { m_matrix.setIdentity(); }
template<typename OtherDerived>
@ -92,13 +220,58 @@ public:
template<typename OtherDerived>
Transform& pretranslate(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived>
Transform& shear(Scalar sx, Scalar sy);
template<typename OtherDerived>
Transform& preshear(Scalar sx, Scalar sy);
AffineMatrixType extractRotation() const;
AffineMatrixType extractRotationNoShear() const;
template<typename PositionDerived, typename ScaleDerived>
Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const Orientation& orientation, const MatrixBase<ScaleDerived> &scale);
const Inverse<MatrixType, false> inverse() const
{ return m_matrix.inverse(); }
protected:
};
#ifdef EIGEN_QT_SUPPORT
/** Initialises \c *this from a QMatrix assuming the dimension is 2.
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>::Transform(const QMatrix& other)
{
*this = other;
}
/** Set \c *this from a QMatrix assuming the dimension is 2.
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
{
EIGEN_STATIC_ASSERT(Dim==2, you_did_a_programming_error);
m_matrix << other.m11(), other.m21(), other.dx(),
other.m12(), other.m22(), other.dy(),
0, 0, 1;
}
/** \returns a QMatrix from \c *this assuming the dimension is 2.
*/
template<typename Scalar, int Dim>
QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
{
EIGEN_STATIC_ASSERT(Dim==2, you_did_a_programming_error);
return QMatrix( other.coeffRef(0,0), other.coeffRef(1,0),
other.coeffRef(0,1), other.coeffRef(1,1),
other.coeffRef(0,2), other.coeffRef(1,2),
}
#endif
template<typename Scalar, int Dim>
template<typename OtherDerived>
const typename Transform<Scalar,Dim>::template ProductReturnType<OtherDerived>::Type
@ -133,7 +306,7 @@ Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
m_matrix.template block<3,4>(0,0) = (other.asDiagonal().eval() * m_matrix.template block<3,4>(0,0)).lazy();
m_matrix.template block<3,4>(0,0) = (other.asDiagonal() * m_matrix.template block<3,4>(0,0)).lazy();
return *this;
}
@ -167,6 +340,39 @@ Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
return *this;
}
/** Applies on the right the shear transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \warning 2D only.
* \sa preshear()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
{
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
&& int(OtherDerived::SizeAtCompileTime)==int(Dim) && int(Dim)==2, you_did_a_programming_error);
VectorType tmp = affine().col(0)*sy + affine().col(1);
affine() << affine().col(0) + affine().col(1)*sx, tmp;
return *this;
}
/** Applies on the left the shear transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \warning 2D only.
* \sa shear()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
{
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
m_matrix.template block<3,4>(0,0) = AffineMatrixType(1, sx, sy, 1) * m_matrix.template block<3,4>(0,0);
return *this;
}
/** \returns the rotation part of the transformation using a QR decomposition.
* \sa extractRotationNoShear()
*/
@ -189,6 +395,22 @@ Transform<Scalar,Dim>::extractRotationNoShear() const
.verticalRedux(ei_scalar_sum_op<Scalar>()).cwiseSqrt();
}
/** Convenient method to set \c *this from a position, orientation and scale
* of a 3D object.
*/
template<typename Scalar, int Dim>
template<typename PositionDerived, typename ScaleDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const Orientation& orientation, const MatrixBase<ScaleDerived> &scale)
{
affine() = orientation.toRotationMatrix();
translation() = position;
m_matrix(Dim,Dim) = 1.;
m_matrix.template block<1,Dim>(Dim,0).setZero();
affine() *= scale.asDiagonal();
}
//----------
template<typename Scalar, int Dim>
@ -216,12 +438,17 @@ template<typename Other>
struct Transform<Scalar,Dim>::ei_transform_product_impl<Other,Dim,1>
{
typedef typename Transform<Scalar,Dim>::AffineMatrixRef MatrixType;
typedef const CwiseBinaryOp<
ei_scalar_sum_op<Scalar>,
NestByValue<Product<NestByValue<MatrixType>,Other> >,
NestByValue<typename Transform<Scalar,Dim>::VectorRef> > ResultType;
typedef const CwiseUnaryOp<
ei_scalar_multiple_op<Scalar>,
NestByValue<CwiseBinaryOp<
ei_scalar_sum_op<Scalar>,
NestByValue<Product<NestByValue<MatrixType>,Other> >,
NestByValue<typename Transform<Scalar,Dim>::VectorRef> > >
> ResultType;
// FIXME shall we offer an optimized version when the last row is know to be 0,0...,0,1 ?
static ResultType run(const Transform<Scalar,Dim>& tr, const Other& other)
{ return (tr.affine().nestByValue() * other).nestByValue() + tr.translation().nestByValue(); }
{ return ((tr.affine().nestByValue() * other).nestByValue() + tr.translation().nestByValue()).nestByValue()
* (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
};
#endif // EIGEN_TRANSFORM_H

View File

@ -239,7 +239,8 @@ HessenbergDecomposition<MatrixType>::matrixH(void) const
// and fill it (to avoid temporaries)
int n = m_matrix.rows();
MatrixType matH = m_matrix;
matH.corner(BottomLeft,n-2, n-2).template part<Lower>().setZero();
if (n>2)
matH.corner(BottomLeft,n-2, n-2).template part<Lower>().setZero();
return matH;
}

View File

@ -160,8 +160,11 @@ Tridiagonalization<MatrixType>::matrixT(void) const
int n = m_matrix.rows();
MatrixType matT = m_matrix;
matT.corner(TopRight,n-1, n-1).diagonal() = subDiagonal().conjugate();
matT.corner(TopRight,n-2, n-2).template part<Upper>().setZero();
matT.corner(BottomLeft,n-2, n-2).template part<Lower>().setZero();
if (n>2)
{
matT.corner(TopRight,n-2, n-2).template part<Upper>().setZero();
matT.corner(BottomLeft,n-2, n-2).template part<Lower>().setZero();
}
return matT;
}

View File

@ -116,6 +116,9 @@ template<typename Scalar> void geometry(void)
t1.translate(-v0);
VERIFY((t0.matrix() * t1.matrix()).isIdentity());
t1.fromPositionOrientationScale(v0, q1, v1);
VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
}
void test_geometry()