Roll back changes to core. Move include of TensorFunctors.h up to satisfy dependence in TensorCostModel.h.

This commit is contained in:
Rasmus Munk Larsen 2016-05-17 10:25:19 -07:00
parent 5005b27fc8
commit 0dbd68145f
4 changed files with 83 additions and 81 deletions

View File

@ -89,13 +89,13 @@ template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op {
enum {
Conj = NumTraits<LhsScalar>::IsComplex
};
typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
{ return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
@ -591,47 +591,6 @@ template<typename Scalar>
struct functor_traits<scalar_inverse_mult_op<Scalar> >
{ enum { PacketAccess = packet_traits<Scalar>::HasDiv, Cost = NumTraits<Scalar>::template Div<PacketAccess>::Cost }; };
/** \internal
* \brief Template functor to compute the modulo between an array and a fixed scalar.
*/
template <typename Scalar>
struct scalar_mod_op {
EIGEN_DEVICE_FUNC scalar_mod_op(const Scalar& divisor) : m_divisor(divisor) {}
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a % m_divisor; }
const Scalar m_divisor;
};
template <typename Scalar>
struct functor_traits<scalar_mod_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::template Div<false>::Cost, PacketAccess = false }; };
/** \internal
* \brief Template functor to compute the modulo between two arrays.
*/
template <typename Scalar>
struct scalar_mod2_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_mod2_op);
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a, const Scalar& b) const { return a % b; }
};
template <typename Scalar>
struct functor_traits<scalar_mod2_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::template Div<false>::Cost, PacketAccess = false }; };
/** \internal
* \brief Template functor to compute the float modulo between two arrays.
*/
template <typename Scalar>
struct scalar_fmod_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_fmod_op);
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar
operator()(const Scalar& a, const Scalar& b) const {
return numext::fmod(a, b);
}
};
template <typename Scalar>
struct functor_traits<scalar_fmod_op<Scalar> > {
enum { Cost = 13, // Reciprocal throughput of FPREM on Haswell.
PacketAccess = false };
};
} // end namespace internal

View File

@ -496,7 +496,7 @@ struct functor_traits<scalar_digamma_op<Scalar> >
PacketAccess = packet_traits<Scalar>::HasDiGamma
};
};
/** \internal
* \brief Template functor to compute the Riemann Zeta function of two arguments.
* \sa class CwiseUnaryOp, Cwise::zeta()
@ -587,33 +587,6 @@ struct functor_traits<scalar_erfc_op<Scalar> >
};
};
/** \internal
* \brief Template functor to compute the sigmoid of a scalar
* \sa class CwiseUnaryOp, ArrayBase::sigmoid()
*/
template <typename T>
struct scalar_sigmoid_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sigmoid_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const {
const T one = T(1);
return one / (one + numext::exp(-x));
}
template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Packet packetOp(const Packet& x) const {
const Packet one = pset1<Packet>(T(1));
return pdiv(one, padd(one, pexp(pnegate(x))));
}
};
template <typename T>
struct functor_traits<scalar_sigmoid_op<T> > {
enum {
Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost * 6,
PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasDiv &&
packet_traits<T>::HasNegate && packet_traits<T>::HasExp
};
};
/** \internal
* \brief Template functor to compute the atan of a scalar
@ -654,7 +627,7 @@ template<typename Scalar> struct scalar_tanh_op {
const Packet plus_9 = pset1<Packet>(9.0);
const Packet minus_9 = pset1<Packet>(-9.0);
const Packet x = pmax(minus_9, pmin(plus_9, _x));
// The monomial coefficients of the numerator polynomial (odd).
const Packet alpha_1 = pset1<Packet>(4.89352455891786e-03);
const Packet alpha_3 = pset1<Packet>(6.37261928875436e-04);
@ -663,16 +636,16 @@ template<typename Scalar> struct scalar_tanh_op {
const Packet alpha_9 = pset1<Packet>(-8.60467152213735e-11);
const Packet alpha_11 = pset1<Packet>(2.00018790482477e-13);
const Packet alpha_13 = pset1<Packet>(-2.76076847742355e-16);
// The monomial coefficients of the denominator polynomial (even).
const Packet beta_0 = pset1<Packet>(4.89352518554385e-03);
const Packet beta_2 = pset1<Packet>(2.26843463243900e-03);
const Packet beta_4 = pset1<Packet>(1.18534705686654e-04);
const Packet beta_6 = pset1<Packet>(1.19825839466702e-06);
// Since the polynomials are odd/even, we need x^2.
const Packet x2 = pmul(x, x);
// Evaluate the numerator polynomial p.
Packet p = pmadd(x2, alpha_13, alpha_11);
p = pmadd(x2, p, alpha_9);
@ -681,12 +654,12 @@ template<typename Scalar> struct scalar_tanh_op {
p = pmadd(x2, p, alpha_3);
p = pmadd(x2, p, alpha_1);
p = pmul(x, p);
// Evaluate the denominator polynomial p.
Packet q = pmadd(x2, beta_6, beta_4);
q = pmadd(x2, q, beta_2);
q = pmadd(x2, q, beta_0);
// Divide the numerator by the denominator.
return pdiv(p, q);
}
@ -965,7 +938,7 @@ struct scalar_sign_op<Scalar,true> {
template<typename Scalar>
struct functor_traits<scalar_sign_op<Scalar> >
{ enum {
Cost =
Cost =
NumTraits<Scalar>::IsComplex
? ( 8*NumTraits<Scalar>::MulCost ) // roughly
: ( 3*NumTraits<Scalar>::AddCost),

View File

@ -65,10 +65,10 @@ typedef unsigned __int64 uint64_t;
#endif
#endif
#include "src/Tensor/TensorMacros.h"
#include "src/Tensor/TensorForwardDeclarations.h"
#include "src/Tensor/TensorMeta.h"
#include "src/Tensor/TensorFunctors.h"
#include "src/Tensor/TensorCostModel.h"
#include "src/Tensor/TensorDeviceDefault.h"
#include "src/Tensor/TensorDeviceThreadPool.h"
@ -78,7 +78,6 @@ typedef unsigned __int64 uint64_t;
#include "src/Tensor/TensorDimensions.h"
#include "src/Tensor/TensorInitializer.h"
#include "src/Tensor/TensorTraits.h"
#include "src/Tensor/TensorFunctors.h"
#include "src/Tensor/TensorUInt128.h"
#include "src/Tensor/TensorIntDiv.h"

View File

@ -13,6 +13,77 @@
namespace Eigen {
namespace internal {
/** \internal
* \brief Template functor to compute the modulo between an array and a scalar.
*/
template <typename Scalar>
struct scalar_mod_op {
EIGEN_DEVICE_FUNC scalar_mod_op(const Scalar& divisor) : m_divisor(divisor) {}
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a % m_divisor; }
const Scalar m_divisor;
};
template <typename Scalar>
struct functor_traits<scalar_mod_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::template Div<false>::Cost, PacketAccess = false }; };
/** \internal
* \brief Template functor to compute the modulo between 2 arrays.
*/
template <typename Scalar>
struct scalar_mod2_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_mod2_op);
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a, const Scalar& b) const { return a % b; }
};
template <typename Scalar>
struct functor_traits<scalar_mod2_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::template Div<false>::Cost, PacketAccess = false }; };
template <typename Scalar>
struct scalar_fmod_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_fmod_op);
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar
operator()(const Scalar& a, const Scalar& b) const {
return numext::fmod(a, b);
}
};
template <typename Scalar>
struct functor_traits<scalar_fmod_op<Scalar> > {
enum { Cost = 13, // Reciprocal throughput of FPREM on Haswell.
PacketAccess = false };
};
/** \internal
* \brief Template functor to compute the sigmoid of a scalar
* \sa class CwiseUnaryOp, ArrayBase::sigmoid()
*/
template <typename T>
struct scalar_sigmoid_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sigmoid_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const {
const T one = T(1);
return one / (one + numext::exp(-x));
}
template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Packet packetOp(const Packet& x) const {
const Packet one = pset1<Packet>(T(1));
return pdiv(one, padd(one, pexp(pnegate(x))));
}
};
template <typename T>
struct functor_traits<scalar_sigmoid_op<T> > {
enum {
Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost * 6,
PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasDiv &&
packet_traits<T>::HasNegate && packet_traits<T>::HasExp
};
};
// Standard reduction functors
template <typename T> struct SumReducer
{