Cleanup Tensor block destination and materialized block storage allocation

This commit is contained in:
Eugene Zhulenev 2019-10-16 17:14:37 -07:00
parent 02431cbe71
commit 0d2a14ce11
10 changed files with 220 additions and 291 deletions

View File

@ -235,11 +235,9 @@ struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device>
m_leftImpl.data() != NULL) {
// If destination has raw data access, we pass it as a potential
// destination for a block descriptor evaluation.
desc.AddDestinationBuffer(
desc.template AddDestinationBuffer<Layout>(
/*dst_base=*/m_leftImpl.data() + desc.offset(),
/*dst_strides=*/internal::strides<Layout>(m_leftImpl.dimensions()),
/*total_dst_bytes=*/
(internal::array_prod(m_leftImpl.dimensions()) * sizeof(Scalar)));
/*dst_strides=*/internal::strides<Layout>(m_leftImpl.dimensions()));
}
RightTensorBlock block = m_rightImpl.blockV2(desc, scratch, /*root_of_expr_ast=*/true);

View File

@ -70,91 +70,89 @@ class TensorBlockDescriptor {
// If we evaluate a Tensor assignment, and expression on the left, already has
// a memory buffer, then we might do performance optimization, and evaluate
// the root expression directly into the memory, or maybe use it as temporary
// storage for some of the subexpressions, to avoid dynamic memory allocation.
// the root expression directly into the final output memory. Some time it's
// possible to reuse it for materializing subexpressions inside an expression
// tree, to to avoid dynamic memory allocation.
//
// This is a type erased storage, because passing Scalar type through all the
// expression evaluation layers it way too many templates. Also it should be
// possible to use this destination as a temp buffer for materializing
// expressions with type, not matching the final output.
// The pointer type of the underlying storage is erased, because passing
// Scalar type through all the expression evaluation layers is way too many
// templates. In practice destination buffer type should always match the
// evaluated expression scalar type.
class DestinationBuffer {
public:
enum DestinationBufferKind {
// Destination buffer is not defined (`m_data` == nullptr).
kEmpty,
// Tensor block defined by an owning tensor block descriptor can fit
// contiguously into the destination buffer. In this case it's safe to
// materialize tensor block in the destination buffer, wrap it in a
// TensorMap, and use to build Eigen expression on top of it.
kContiguous,
// Destination buffer strides do not match strides of the contiguously
// stored block, and it's impossible to define a TensorMap over this
// buffer. However if we are evaluating a root of an expression tree, we
// still can materialize an output into this destination, because we can
// guarantee that no one will ever access it through block API.
//
// In theory it is possible to build valid TensorStriding<TensorMap>
// expression on top of this destination buffer, however it has
// inefficient coeff/packet access, and defeats the purpose of fast block
// evaluation API.
kStrided
};
template <typename Scalar>
Scalar* data() const {
eigen_assert(m_data_type_size == sizeof(Scalar));
return static_cast<Scalar*>(m_data);
}
template <typename Scalar>
Dimensions dimensions() const {
Dimensions dimensions;
for (int i = 0; i < NumDims; ++i) {
eigen_assert(m_dimensions[i] % sizeof(Scalar) == 0);
dimensions[i] = m_dimensions[i] / sizeof(Scalar);
}
return dimensions;
}
template <typename Scalar>
Dimensions strides() const {
Dimensions strides;
for (int i = 0; i < NumDims; ++i) {
eigen_assert(m_strides[i] % sizeof(Scalar) == 0);
strides[i] = m_strides[i] / sizeof(Scalar);
}
return strides;
}
// Returns true if the tensor block corresponding to `desc` fits into the
// contiguous block of memory defined by `*this`.
template <typename Scalar, int Layout>
bool fitsContiguously(const TensorBlockDescriptor& desc) const {
if (m_data == NULL) return false;
const Dimensions& desc_dims = desc.dimensions();
const Dimensions& dst_dims = dimensions<Scalar>();
if (!dimensions_match(desc_dims, dst_dims)) return false;
const Dimensions& desc_strides = internal::strides<Layout>(desc_dims);
const Dimensions& dst_strides = strides<Scalar>();
// Compare strides ignoring dimensions of size `1`.
for (int i = 0; i < NumDims; ++i) {
if (desc_dims[i] == 1) continue;
if (desc_strides[i] != dst_strides[i]) return false;
}
return true;
}
const Dimensions& strides() const { return m_strides; }
const DestinationBufferKind& kind() const { return m_kind; }
private:
friend class TensorBlockDescriptor;
DestinationBuffer() : m_data(NULL), m_total_dst_bytes(0) {}
DestinationBuffer() : m_data(NULL), m_data_type_size(0), m_kind(kEmpty) {}
template <typename Scalar>
DestinationBuffer(Scalar* data, const Dimensions& dimensions,
const Dimensions& strides, size_t total_dst_bytes)
DestinationBuffer(Scalar* data, const Dimensions& strides,
DestinationBufferKind kind)
: m_data(static_cast<void*>(data)),
m_dimensions(dimensions),
m_data_type_size(sizeof(Scalar)),
m_strides(strides),
m_total_dst_bytes(total_dst_bytes) {
// TODO(ezhulenev): Benchmark template meta-unroll for this loop.
for (int i = 0; i < NumDims; ++i) {
m_dimensions[i] *= sizeof(Scalar);
m_strides[i] *= sizeof(Scalar);
}
m_kind(kind) {}
template <int Layout, typename Scalar>
static DestinationBuffer make(const TensorBlockDescriptor& desc,
Scalar* data, const Dimensions& strides) {
return DestinationBuffer(data, strides, kind<Layout>(desc, strides));
}
template <int Layout>
static DestinationBufferKind kind(const TensorBlockDescriptor& desc,
const Dimensions& strides) {
const Dimensions& desc_dims = desc.dimensions();
const Dimensions& desc_strides = internal::strides<Layout>(desc_dims);
for (int i = 0; i < NumDims; ++i) {
if (desc_dims[i] == 1) continue;
if (desc_strides[i] != strides[i]) return kStrided;
}
return kContiguous;
}
// Storage pointer is type erased, to reduce template bloat, but we still
// keep the size of the underlying element type for error checking.
void* m_data;
Dimensions m_dimensions;
size_t m_data_type_size;
// Destination buffer dimensions always match the dimensions of a tensor
// block descriptor it belongs to, however strides might be different.
Dimensions m_strides;
// Total size of the memory buffer at the destination (typically the total
// size of the left hand side of an assignment expression). This can be the
// same as `array_prod(m_dimensions)` if the assignment target has just a
// single block, but typically it's a larger number.
size_t m_total_dst_bytes;
DestinationBufferKind m_kind;
};
TensorBlockDescriptor(const IndexType offset, const Dimensions& dimensions,
@ -173,40 +171,31 @@ class TensorBlockDescriptor {
IndexType dimension(int index) const { return m_dimensions[index]; }
IndexType size() const { return array_prod<IndexType>(m_dimensions); }
template <typename Scalar>
void AddDestinationBuffer(Scalar* dst_base, const Dimensions& dst_strides,
size_t total_dst_bytes) {
const DestinationBuffer& destination() const { return m_destination; }
template <int Layout, typename Scalar>
void AddDestinationBuffer(Scalar* dst_base, const Dimensions& dst_strides) {
eigen_assert(dst_base != NULL);
m_destination =
DestinationBuffer(dst_base, m_dimensions, dst_strides, total_dst_bytes);
DestinationBuffer::template make<Layout>(*this, dst_base, dst_strides);
}
template <typename Scalar, typename DstStridesIndexType>
template <int Layout, typename Scalar, typename DstStridesIndexType>
void AddDestinationBuffer(
Scalar* dst_base, const DSizes<DstStridesIndexType, NumDims>& dst_strides,
size_t total_dst_bytes) {
Scalar* dst_base,
const DSizes<DstStridesIndexType, NumDims>& dst_strides) {
// DSizes constructor will do index type promotion if it's safe.
AddDestinationBuffer(dst_base, Dimensions(dst_strides), total_dst_bytes);
AddDestinationBuffer<Layout>(*this, dst_base, Dimensions(dst_strides));
}
TensorBlockDescriptor& DropDestinationBuffer() {
m_destination.m_data = NULL;
m_destination.m_kind = DestinationBuffer::kEmpty;
return *this;
}
bool HasDestinationBuffer() const { return m_destination.m_data != NULL; }
const DestinationBuffer& GetDestinationBuffer() const {
return m_destination;
}
// Returns a non-nullptr pointer to a destination buffer memory if this
// block has a contiguous destination buffer.
template <typename Scalar, int Layout>
Scalar* destination() const {
if (m_destination.template fitsContiguously<Scalar, Layout>(*this)) {
return m_destination.template data<Scalar>();
}
return NULL;
bool HasDestinationBuffer() const {
return m_destination.kind() != DestinationBuffer::kEmpty;
}
// Returns a copy of `*this` with updated offset.
@ -404,6 +393,80 @@ class TensorMaterializedBlock {
typedef internal::TensorBlockDescriptor<NumDims, IndexType> TensorBlockDesc;
// TensorMaterializedBlock can be backed by different types of storage:
//
// (1) Contiguous block of memory allocated with scratch allocator.
// (2) Contiguous block of memory reused from tensor block descriptor
// destination buffer.
// (3) Strided block of memory reused from tensor block descriptor
// destination buffer.
//
class Storage {
public:
Scalar* data() const { return m_data; }
const Dimensions& dimensions() const { return m_dimensions; }
const Dimensions& strides() const { return m_strides; }
TensorMaterializedBlock AsTensorMaterializedBlock() const {
return TensorMaterializedBlock(
m_materialized_in_output
? internal::TensorBlockKind::kMaterializedInOutput
: internal::TensorBlockKind::kMaterializedInScratch,
m_data, m_dimensions, !m_strided_storage);
}
private:
friend class TensorMaterializedBlock;
Storage(Scalar* data, const Dimensions& dimensions,
const Dimensions& strides, bool materialized_in_output,
bool strided_storage)
: m_data(data),
m_dimensions(dimensions),
m_strides(strides),
m_materialized_in_output(materialized_in_output),
m_strided_storage(strided_storage) {}
Scalar* m_data;
Dimensions m_dimensions;
Dimensions m_strides;
bool m_materialized_in_output;
bool m_strided_storage;
};
// Creates a storage for materialized block either from the block descriptor
// destination buffer, or allocates a new buffer with scratch allocator.
template <typename TensorBlockScratch>
EIGEN_STRONG_INLINE static Storage prepareStorage(
TensorBlockDesc& desc, TensorBlockScratch& scratch,
bool allow_strided_storage = false) {
// Try to reuse destination as an output block buffer.
typedef typename TensorBlockDesc::DestinationBuffer DestinationBuffer;
if (desc.destination().kind() == DestinationBuffer::kContiguous) {
Scalar* buffer = desc.destination().template data<Scalar>();
desc.DropDestinationBuffer();
return Storage(buffer, desc.dimensions(),
internal::strides<Layout>(desc.dimensions()),
/*materialized_in_output=*/true,
/*strided_storage=*/false);
} else if (desc.destination().kind() == DestinationBuffer::kStrided &&
allow_strided_storage) {
Scalar* buffer = desc.destination().template data<Scalar>();
desc.DropDestinationBuffer();
return Storage(buffer, desc.dimensions(), desc.destination().strides(),
/*materialized_in_output=*/true, /*strided_storage=*/true);
} else {
void* mem = scratch.allocate(desc.size() * sizeof(Scalar));
return Storage(static_cast<Scalar*>(mem), desc.dimensions(),
internal::strides<Layout>(desc.dimensions()),
/*materialized_in_output=*/false,
/*strided_storage=*/false);
}
}
// Creates a materialized block for the given descriptor from a memory buffer.
template <typename DataDimensions, typename TensorBlockScratch>
EIGEN_STRONG_INLINE static TensorMaterializedBlock materialize(
@ -448,19 +511,8 @@ class TensorMaterializedBlock {
block_start, desc.dimensions());
} else {
// Try to reuse destination as an output block buffer.
Scalar* block_buffer = desc.template destination<Scalar, Layout>();
bool materialized_in_output;
if (block_buffer != NULL) {
desc.DropDestinationBuffer();
materialized_in_output = true;
} else {
materialized_in_output = false;
void* mem = scratch.allocate(desc.size() * sizeof(Scalar));
block_buffer = static_cast<Scalar*>(mem);
}
// Reuse destination buffer or allocate new buffer with scratch allocator.
const Storage storage = prepareStorage(desc, scratch);
typedef internal::TensorBlockIOV2<Scalar, IndexType, NumDims, Layout>
TensorBlockIO;
@ -469,17 +521,11 @@ class TensorMaterializedBlock {
TensorBlockIOSrc src(internal::strides<Layout>(Dimensions(data_dims)),
data, desc.offset());
TensorBlockIODst dst(desc.dimensions(),
internal::strides<Layout>(desc.dimensions()),
block_buffer);
TensorBlockIODst dst(storage.dimensions(), storage.strides(),
storage.data());
TensorBlockIO::Copy(dst, src);
return TensorMaterializedBlock(
materialized_in_output
? internal::TensorBlockKind::kMaterializedInOutput
: internal::TensorBlockKind::kMaterializedInScratch,
block_buffer, desc.dimensions());
return storage.AsTensorMaterializedBlock();
}
}

View File

@ -890,24 +890,14 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
return emptyBlock();
}
// Check if we can reuse `desc` destination, or allocate new scratch buffer.
ScalarNoConst* materialized_output =
desc.template destination<ScalarNoConst, Layout>();
bool materialized_in_output;
// Prepare storage for the materialized broadcasting result.
const typename TensorBlockV2::Storage block_storage =
TensorBlockV2::prepareStorage(desc, scratch);
ScalarNoConst* materialized_output = block_storage.data();
if (materialized_output != NULL) {
desc.DropDestinationBuffer();
materialized_in_output = true;
} else {
materialized_in_output = false;
const size_t materialized_output_size = desc.size() * sizeof(Scalar);
void* output_scratch_mem = scratch.allocate(materialized_output_size);
materialized_output = static_cast<ScalarNoConst*>(output_scratch_mem);
}
ScalarNoConst* materialized_input = NULL;
// We potentially will need to materialize input blocks.
size_t materialized_input_size = 0;
ScalarNoConst* materialized_input = NULL;
// Initialize block broadcating iterator state for outer dimensions (outer
// with regard to bcast dimension). Dimension in this array are always in
@ -951,11 +941,7 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
}
}
return TensorBlockV2(
materialized_in_output
? internal::TensorBlockKind::kMaterializedInOutput
: internal::TensorBlockKind::kMaterializedInScratch,
materialized_output, desc.dimensions());
return block_storage.AsTensorMaterializedBlock();
}
EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
@ -1019,7 +1005,8 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
Index output_span;
};
BlockBroadcastingParams blockBroadcastingParams(TensorBlockDesc& desc) const {
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlockBroadcastingParams
blockBroadcastingParams(TensorBlockDesc& desc) const {
BlockBroadcastingParams params;
params.input_dims = Dimensions(m_impl.dimensions());

View File

@ -369,12 +369,13 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlockV2
blockV2(TensorBlockDesc& desc, TensorBlockScratch& scratch,
bool /*root_of_expr_ast*/ = false) const {
bool root_of_expr_ast = false) const {
const Index chip_dim = m_dim.actualDim();
DSizes<Index, NumInputDims> input_block_dims;
for (int i = 0; i < NumInputDims; ++i) {
input_block_dims[i] = i < chip_dim ? desc.dimension(i)
input_block_dims[i]
= i < chip_dim ? desc.dimension(i)
: i > chip_dim ? desc.dimension(i - 1)
: 1;
}
@ -382,15 +383,21 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
ArgTensorBlockDesc arg_desc(srcCoeff(desc.offset()), input_block_dims);
// Try to reuse destination buffer for materializing argument block.
ScalarNoConst* destination_buffer =
desc.template destination<ScalarNoConst, Layout>();
if (destination_buffer != NULL) {
arg_desc.AddDestinationBuffer(
destination_buffer, internal::strides<Layout>(arg_desc.dimensions()),
(arg_desc.size() * sizeof(Scalar)));
if (desc.HasDestinationBuffer()) {
DSizes<Index, NumInputDims> arg_destination_strides;
for (int i = 0; i < NumInputDims; ++i) {
arg_destination_strides[i]
= i < chip_dim ? desc.destination().strides()[i]
: i > chip_dim ? desc.destination().strides()[i - 1]
: 0; // for dimensions of size `1` stride should never be used.
}
ArgTensorBlock arg_block = m_impl.blockV2(arg_desc, scratch);
arg_desc.template AddDestinationBuffer<Layout>(
desc.destination().template data<ScalarNoConst>(),
arg_destination_strides);
}
ArgTensorBlock arg_block = m_impl.blockV2(arg_desc, scratch, root_of_expr_ast);
if (!arg_desc.HasDestinationBuffer()) desc.DropDestinationBuffer();
if (arg_block.data() != NULL) {
@ -401,21 +408,9 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
} else {
// Assign argument block expression to a buffer.
// Try to reuse destination as an output buffer.
ScalarNoConst* output_buffer =
desc.template destination<ScalarNoConst, Layout>();
bool materialized_in_output;
if (output_buffer != NULL) {
desc.DropDestinationBuffer();
materialized_in_output = true;
} else {
materialized_in_output = false;
const size_t materialized_output_size = desc.size() * sizeof(Scalar);
void* output_scratch_mem = scratch.allocate(materialized_output_size);
output_buffer = static_cast<ScalarNoConst*>(output_scratch_mem);
}
// Prepare storage for the materialized chipping result.
const typename TensorBlockV2::Storage block_storage =
TensorBlockV2::prepareStorage(desc, scratch);
typedef internal::TensorBlockAssignment<
ScalarNoConst, NumInputDims, typename ArgTensorBlock::XprType, Index>
@ -425,14 +420,10 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
TensorBlockAssignment::target(
arg_desc.dimensions(),
internal::strides<Layout>(arg_desc.dimensions()),
output_buffer),
block_storage.data()),
arg_block.expr());
return TensorBlockV2(
materialized_in_output
? internal::TensorBlockKind::kMaterializedInOutput
: internal::TensorBlockKind::kMaterializedInScratch,
output_buffer, desc.dimensions());
return block_storage.AsTensorMaterializedBlock();
}
}

View File

@ -173,12 +173,9 @@ struct TensorEvaluator<const TensorEvalToOp<ArgType, MakePointer_>, Device>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalBlockV2(
TensorBlockDesc& desc, TensorBlockScratch& scratch) {
// Add `m_buffer` as destination buffer to the block descriptor.
desc.AddDestinationBuffer(
desc.template AddDestinationBuffer<Layout>(
/*dst_base=*/m_buffer + desc.offset(),
/*dst_strides=*/internal::strides<Layout>(m_impl.dimensions()),
/*total_dst_bytes=*/
(internal::array_prod(m_impl.dimensions())
* sizeof(Scalar)));
/*dst_strides=*/internal::strides<Layout>(m_impl.dimensions()));
ArgTensorBlock block = m_impl.blockV2(desc, scratch);

View File

@ -248,21 +248,6 @@ struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device>
extract_coordinates(desc.offset(), coords);
array<Index, NumDims> initial_coords = coords;
// Try to reuse destination as an output block buffer.
CoeffReturnType* block_buffer =
desc.template destination<CoeffReturnType, Layout>();
bool materialized_in_output;
if (block_buffer != NULL) {
desc.DropDestinationBuffer();
materialized_in_output = true;
} else {
materialized_in_output = false;
void* mem = scratch.allocate(desc.size() * sizeof(CoeffReturnType));
block_buffer = static_cast<CoeffReturnType*>(mem);
}
// Offset in the output block buffer.
Index offset = 0;
@ -278,6 +263,12 @@ struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device>
}
eigen_assert(it[0].stride == 1);
// Prepare storage for the materialized generator result.
const typename TensorBlockV2::Storage block_storage =
TensorBlockV2::prepareStorage(desc, scratch);
CoeffReturnType* block_buffer = block_storage.data();
while (it[NumDims - 1].count < it[NumDims - 1].size) {
// Generate data for the inner-most dimension.
for (Index i = 0; i < it[0].size; ++i) {
@ -304,11 +295,7 @@ struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device>
}
}
return TensorBlockV2(
materialized_in_output
? internal::TensorBlockKind::kMaterializedInOutput
: internal::TensorBlockKind::kMaterializedInScratch,
block_buffer, desc.dimensions());
return block_storage.AsTensorMaterializedBlock();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost

View File

@ -238,22 +238,6 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
desc.dimensions());
}
// Check if we can reuse `desc` destination, or allocate new scratch buffer.
ScalarNoConst* materialized_output =
desc.template destination<ScalarNoConst, Layout>();
bool materialized_in_output;
if (materialized_output != NULL) {
desc.DropDestinationBuffer();
materialized_in_output = true;
} else {
const size_t materialized_output_size = desc.size() * sizeof(Scalar);
void* output_scratch_mem = scratch.allocate(materialized_output_size);
materialized_output = static_cast<ScalarNoConst*>(output_scratch_mem);
materialized_in_output = false;
}
static const bool IsColMajor = Layout == static_cast<int>(ColMajor);
Index offset = desc.offset();
@ -363,6 +347,10 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
typedef internal::StridedLinearBufferCopy<ScalarNoConst, Index> LinCopy;
// Prepare storage for the materialized padding result.
const typename TensorBlockV2::Storage block_storage =
TensorBlockV2::prepareStorage(desc, scratch);
// Iterate copying data from `m_impl.data()` to the output buffer.
for (Index size = 0; size < output_size; size += output_inner_dim_size) {
// Detect if we are in the padded region (exclude innermost dimension).
@ -376,7 +364,7 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
if (is_padded) {
// Fill with padding value.
LinCopy::template Run<LinCopy::Kind::FillLinear>(
typename LinCopy::Dst(output_offset, 1, materialized_output),
typename LinCopy::Dst(output_offset, 1, block_storage.data()),
typename LinCopy::Src(0, 0, &m_paddingValue),
output_inner_dim_size);
@ -385,7 +373,7 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
const Index out = output_offset;
LinCopy::template Run<LinCopy::Kind::FillLinear>(
typename LinCopy::Dst(out, 1, materialized_output),
typename LinCopy::Dst(out, 1, block_storage.data()),
typename LinCopy::Src(0, 0, &m_paddingValue),
output_inner_pad_before_size);
}
@ -397,7 +385,7 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
eigen_assert(output_inner_copy_size == 0 || m_impl.data() != NULL);
LinCopy::template Run<LinCopy::Kind::Linear>(
typename LinCopy::Dst(out, 1, materialized_output),
typename LinCopy::Dst(out, 1, block_storage.data()),
typename LinCopy::Src(in, 1, m_impl.data()),
output_inner_copy_size);
}
@ -407,7 +395,7 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
output_inner_copy_size;
LinCopy::template Run<LinCopy::Kind::FillLinear>(
typename LinCopy::Dst(out, 1, materialized_output),
typename LinCopy::Dst(out, 1, block_storage.data()),
typename LinCopy::Src(0, 0, &m_paddingValue),
output_inner_pad_after_size);
}
@ -431,11 +419,7 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
}
}
return TensorBlockV2(materialized_in_output
? internal::TensorBlockKind::kMaterializedInOutput
: internal::TensorBlockKind::kMaterializedInScratch,
materialized_output,
desc.dimensions());
return block_storage.AsTensorMaterializedBlock();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return NULL; }

View File

@ -370,21 +370,6 @@ struct TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device
static const Index inner_dim_idx = isColMajor ? 0 : NumDims - 1;
const bool inner_dim_reversed = m_reverse[inner_dim_idx];
// Try to reuse destination as an output block buffer.
CoeffReturnType* block_buffer =
desc.template destination<CoeffReturnType, Layout>();
bool materialized_in_output;
if (block_buffer != NULL) {
desc.DropDestinationBuffer();
materialized_in_output = true;
} else {
materialized_in_output = false;
void* mem = scratch.allocate(desc.size() * sizeof(CoeffReturnType));
block_buffer = static_cast<CoeffReturnType*>(mem);
}
// Offset in the output block.
Index block_offset = 0;
@ -438,6 +423,11 @@ struct TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device
const Index inner_dim_size = it[effective_inner_dim].size;
// Prepare storage for the materialized reverse result.
const typename TensorBlockV2::Storage block_storage =
TensorBlockV2::prepareStorage(desc, scratch);
CoeffReturnType* block_buffer = block_storage.data();
while (it[NumDims - 1].count < it[NumDims - 1].size) {
// Copy inner-most dimension data from reversed location in input.
Index dst = block_offset;
@ -475,11 +465,7 @@ struct TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device
}
}
return TensorBlockV2(
materialized_in_output
? internal::TensorBlockKind::kMaterializedInOutput
: internal::TensorBlockKind::kMaterializedInScratch,
block_buffer, desc.dimensions());
return block_storage.AsTensorMaterializedBlock();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {

View File

@ -351,66 +351,20 @@ struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
typedef typename TensorBlockIO::Dst TensorBlockIODst;
typedef typename TensorBlockIO::Src TensorBlockIOSrc;
ScalarNoConst* block_buffer = NULL;
typename TensorBlockIO::Dimensions block_strides;
bool materialized_in_output = false;
bool has_valid_materialized_expr = true;
if (desc.HasDestinationBuffer()) {
// Check if we can reuse destination buffer for block materialization.
const typename TensorBlockDesc::DestinationBuffer& destination_buffer =
desc.GetDestinationBuffer();
const bool dims_match = dimensions_match(
desc.dimensions(), destination_buffer.template dimensions<Scalar>());
const bool strides_match =
dimensions_match(internal::strides<Layout>(desc.dimensions()),
destination_buffer.template strides<Scalar>());
if (dims_match && strides_match) {
// Destination buffer fits the block contiguously.
materialized_in_output = true;
has_valid_materialized_expr = true;
block_buffer = destination_buffer.template data<ScalarNoConst>();
block_strides = internal::strides<Layout>(desc.dimensions());
eigen_assert(block_buffer != NULL);
} else if (dims_match && root_of_expr_ast) {
// Destination buffer has strides not matching the block strides, but
// for the root of the expression tree it's safe to materialize anyway.
materialized_in_output = true;
has_valid_materialized_expr = false;
block_buffer = destination_buffer.template data<ScalarNoConst>();
block_strides = destination_buffer.template strides<ScalarNoConst>();
eigen_assert(block_buffer != NULL);
}
if (materialized_in_output) desc.DropDestinationBuffer();
}
// If we were not able to reuse destination buffer, allocate temporary
// buffer for block evaluation using scratch allocator.
if (!materialized_in_output) {
void* mem = scratch.allocate(desc.size() * sizeof(ScalarNoConst));
block_buffer = static_cast<ScalarNoConst*>(mem);
block_strides = internal::strides<Layout>(desc.dimensions());
}
const typename TensorBlockV2::Storage block_storage =
TensorBlockV2::prepareStorage(
desc, scratch, /*allow_strided_storage=*/root_of_expr_ast);
typename TensorBlockIO::Dimensions input_strides(m_unshuffledInputStrides);
TensorBlockIOSrc src(input_strides, m_impl.data(), srcCoeff(desc.offset()));
TensorBlockIODst dst(desc.dimensions(), block_strides, block_buffer);
TensorBlockIODst dst(block_storage.dimensions(), block_storage.strides(),
block_storage.data());
typename TensorBlockIO::DimensionsMap dst_to_src_dim_map(m_shuffle);
TensorBlockIO::Copy(dst, src, dst_to_src_dim_map);
return TensorBlockV2(
materialized_in_output
? internal::TensorBlockKind::kMaterializedInOutput
: internal::TensorBlockKind::kMaterializedInScratch,
block_buffer, desc.dimensions(), has_valid_materialized_expr);
return block_storage.AsTensorMaterializedBlock();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {

View File

@ -154,9 +154,8 @@ static void VerifyBlockEvaluator(Expression expr, GenBlockParams gen_block) {
Tensor<T, NumDims, Layout> dst(dst_dims);
dst.setZero();
if (internal::random<bool>()) {
block_params.desc.template AddDestinationBuffer(
dst.data(), internal::strides<Layout>(dst.dimensions()),
dst.dimensions().TotalSize() * sizeof(T));
block_params.desc.template AddDestinationBuffer<Layout>(
dst.data(), internal::strides<Layout>(dst.dimensions()));
}
const bool root_of_expr = internal::random<bool>();