mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-01 18:26:24 +08:00
Fill in open entries in decompositions table.
This commit is contained in:
parent
1b8277fc2a
commit
096c13ea6d
@ -109,7 +109,7 @@ namespace Eigen {
|
||||
<td><em>Soon: blocking</em></td>
|
||||
</tr>
|
||||
|
||||
<tr><td colspan="8">\n Singular values and eigenvalues decompositions</td></tr>
|
||||
<tr><td colspan="9">\n Singular values and eigenvalues decompositions</td></tr>
|
||||
|
||||
<tr>
|
||||
<td>SVD</td>
|
||||
@ -167,7 +167,7 @@ namespace Eigen {
|
||||
<td>Yes</td>
|
||||
<td>Eigenvalues/vectors</td>
|
||||
<td>-</td>
|
||||
<td>TODO Jitse answer this</td>
|
||||
<td>Average</td>
|
||||
<td>-</td>
|
||||
</tr>
|
||||
|
||||
@ -183,7 +183,7 @@ namespace Eigen {
|
||||
<td>-</td>
|
||||
</tr>
|
||||
|
||||
<tr><td colspan="8">\n Helper decompositions</td></tr>
|
||||
<tr><td colspan="9">\n Helper decompositions</td></tr>
|
||||
|
||||
<tr>
|
||||
<td>RealSchur</td>
|
||||
@ -193,13 +193,13 @@ namespace Eigen {
|
||||
<td>Yes</td>
|
||||
<td>-</td>
|
||||
<td>-</td>
|
||||
<td>TODO Jitse answer this</td>
|
||||
<td>Average</td>
|
||||
<td>-</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td>ComplexSchur</td>
|
||||
<td>Square and real</td>
|
||||
<td>Square</td>
|
||||
<td>Slow-very slow<sup><a href="#note2">2</a></sup></td>
|
||||
<td>Depends on condition number</td>
|
||||
<td>Yes</td>
|
||||
@ -211,7 +211,7 @@ namespace Eigen {
|
||||
|
||||
<tr>
|
||||
<td>UpperBidiagonalization</td>
|
||||
<td>rows >= columns</td>
|
||||
<td>Rows >= columns</td>
|
||||
<td>Fast</td>
|
||||
<td>Good</td>
|
||||
<td>-</td>
|
||||
@ -250,7 +250,7 @@ namespace Eigen {
|
||||
\b Notes:
|
||||
<ul>
|
||||
<li><a name="note1">\b 1: </a>There exist a couple of variants of the LDLT algorithm. Eigen's one produces a pure diagonal matrix, and therefore it cannot handle indefinite matrix, unlike Lapack's one which produces a block diagonal matrix.</li>
|
||||
<li><a name="note2">\b 2: </a>Eigenvalues and Schur decompositions rely on iterative algorithms. Their convergence speed depends on how the eigenvalues are well separated.</li>
|
||||
<li><a name="note2">\b 2: </a>Eigenvalues and Schur decompositions rely on iterative algorithms. Their convergence speed depends on how well the eigenvalues are separated.</li>
|
||||
</ul>
|
||||
|
||||
\section TopicLinAlgTerminology Terminology
|
||||
@ -267,7 +267,7 @@ namespace Eigen {
|
||||
In the same vein, it is negative semi-definite if \f$ v^* A v \le 0 \f$ for any non zero vector \f$ v \f$ </dd>
|
||||
|
||||
<dt><b>Blocking</b></dt>
|
||||
<dd>Means the algorithm can work per block, whence guarantying a good scaling of the performance for large matrices.</dd>
|
||||
<dd>Means the algorithm can work per block, whence guaranteeing a good scaling of the performance for large matrices.</dd>
|
||||
<dt><b>Meta-unroller</b></dt>
|
||||
<dd>Means the algorithm is automatically and explicitly unrolled for very small fixed size matrices.</dd>
|
||||
<dt><b></b></dt>
|
||||
|
Loading…
Reference in New Issue
Block a user