mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-12 19:20:36 +08:00
Revert "Update SVD Module to allow specifying computation options with a...
This commit is contained in:
parent
4dd126c630
commit
085c2fc5d5
@ -370,11 +370,8 @@ template<typename Derived> class MatrixBase
|
||||
|
||||
/////////// SVD module ///////////
|
||||
|
||||
template<int Options = 0>
|
||||
inline JacobiSVD<PlainObject, Options> jacobiSvd() const;
|
||||
|
||||
template<int Options = 0>
|
||||
inline BDCSVD<PlainObject, Options> bdcSvd() const;
|
||||
inline JacobiSVD<PlainObject> jacobiSvd(unsigned int computationOptions = 0) const;
|
||||
inline BDCSVD<PlainObject> bdcSvd(unsigned int computationOptions = 0) const;
|
||||
|
||||
/////////// Geometry module ///////////
|
||||
|
||||
|
@ -423,14 +423,14 @@ enum DecompositionOptions {
|
||||
/** \ingroup enums
|
||||
* Possible values for the \p QRPreconditioner template parameter of JacobiSVD. */
|
||||
enum QRPreconditioners {
|
||||
/** Use a QR decomposition with column pivoting as the first step. */
|
||||
ColPivHouseholderQRPreconditioner = 0x0,
|
||||
/** Do not specify what is to be done if the SVD of a non-square matrix is asked for. */
|
||||
NoQRPreconditioner = 0x40,
|
||||
NoQRPreconditioner,
|
||||
/** Use a QR decomposition without pivoting as the first step. */
|
||||
HouseholderQRPreconditioner = 0x80,
|
||||
HouseholderQRPreconditioner,
|
||||
/** Use a QR decomposition with column pivoting as the first step. */
|
||||
ColPivHouseholderQRPreconditioner,
|
||||
/** Use a QR decomposition with full pivoting as the first step. */
|
||||
FullPivHouseholderQRPreconditioner = 0xC0
|
||||
FullPivHouseholderQRPreconditioner
|
||||
};
|
||||
|
||||
#ifdef Success
|
||||
|
@ -277,8 +277,8 @@ template<typename MatrixType> class ColPivHouseholderQR;
|
||||
template<typename MatrixType> class FullPivHouseholderQR;
|
||||
template<typename MatrixType> class CompleteOrthogonalDecomposition;
|
||||
template<typename MatrixType> class SVDBase;
|
||||
template<typename MatrixType, int Options = 0> class JacobiSVD;
|
||||
template<typename MatrixType, int Options = 0> class BDCSVD;
|
||||
template<typename MatrixType, int QRPreconditioner = ColPivHouseholderQRPreconditioner> class JacobiSVD;
|
||||
template<typename MatrixType> class BDCSVD;
|
||||
template<typename MatrixType, int UpLo = Lower> class LLT;
|
||||
template<typename MatrixType, int UpLo = Lower> class LDLT;
|
||||
template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence;
|
||||
|
@ -108,7 +108,7 @@ public:
|
||||
if(norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon())
|
||||
{
|
||||
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
|
||||
JacobiSVD<Matrix<Scalar,2,3>, ComputeFullV> svd(m);
|
||||
JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
|
||||
result.normal() = svd.matrixV().col(2);
|
||||
}
|
||||
else
|
||||
|
@ -651,7 +651,7 @@ EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(con
|
||||
{
|
||||
c = numext::maxi(c,Scalar(-1));
|
||||
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
|
||||
JacobiSVD<Matrix<Scalar,2,3>, ComputeFullV> svd(m);
|
||||
JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
|
||||
Vector3 axis = svd.matrixV().col(2);
|
||||
|
||||
Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
|
||||
|
@ -1105,7 +1105,7 @@ template<typename RotationMatrixType, typename ScalingMatrixType>
|
||||
EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
|
||||
{
|
||||
// Note that JacobiSVD is faster than BDCSVD for small matrices.
|
||||
JacobiSVD<LinearMatrixType, ComputeFullU | ComputeFullV> svd(linear());
|
||||
JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
|
||||
|
||||
Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) ? Scalar(-1) : Scalar(1); // so x has absolute value 1
|
||||
VectorType sv(svd.singularValues());
|
||||
@ -1135,7 +1135,7 @@ template<typename ScalingMatrixType, typename RotationMatrixType>
|
||||
EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
|
||||
{
|
||||
// Note that JacobiSVD is faster than BDCSVD for small matrices.
|
||||
JacobiSVD<LinearMatrixType, ComputeFullU | ComputeFullV> svd(linear());
|
||||
JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
|
||||
|
||||
Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) ? Scalar(-1) : Scalar(1); // so x has absolute value 1
|
||||
VectorType sv(svd.singularValues());
|
||||
|
@ -127,7 +127,7 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
||||
// Eq. (38)
|
||||
const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();
|
||||
|
||||
JacobiSVD<MatrixType, ComputeFullU | ComputeFullV> svd(sigma);
|
||||
JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV);
|
||||
|
||||
// Initialize the resulting transformation with an identity matrix...
|
||||
TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1);
|
||||
|
@ -38,14 +38,14 @@ namespace Eigen {
|
||||
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
||||
IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]");
|
||||
#endif
|
||||
|
||||
template<typename MatrixType_, int Options> class BDCSVD;
|
||||
|
||||
template<typename MatrixType_> class BDCSVD;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename MatrixType_, int Options>
|
||||
struct traits<BDCSVD<MatrixType_,Options> >
|
||||
: svd_traits<MatrixType_, Options>
|
||||
template<typename MatrixType_>
|
||||
struct traits<BDCSVD<MatrixType_> >
|
||||
: traits<MatrixType_>
|
||||
{
|
||||
typedef MatrixType_ MatrixType;
|
||||
};
|
||||
@ -61,11 +61,6 @@ struct traits<BDCSVD<MatrixType_,Options> >
|
||||
* \brief class Bidiagonal Divide and Conquer SVD
|
||||
*
|
||||
* \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition
|
||||
*
|
||||
* \tparam Options this optional parameter allows one to specify options for computing unitaries \a U and \a V.
|
||||
* Possible values are #ComputeThinU, #ComputeThinV, #ComputeFullU, #ComputeFullV.
|
||||
* It is not possible to request the thin and full version of U or V.
|
||||
* By default, unitaries are not computed.
|
||||
*
|
||||
* This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization,
|
||||
* and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD.
|
||||
@ -80,8 +75,8 @@ struct traits<BDCSVD<MatrixType_,Options> >
|
||||
*
|
||||
* \sa class JacobiSVD
|
||||
*/
|
||||
template<typename MatrixType_, int Options>
|
||||
class BDCSVD : public SVDBase<BDCSVD<MatrixType_, Options> >
|
||||
template<typename MatrixType_>
|
||||
class BDCSVD : public SVDBase<BDCSVD<MatrixType_> >
|
||||
{
|
||||
typedef SVDBase<BDCSVD> Base;
|
||||
|
||||
@ -132,20 +127,26 @@ public:
|
||||
* according to the specified problem size.
|
||||
* \sa BDCSVD()
|
||||
*/
|
||||
BDCSVD(Index rows, Index cols)
|
||||
BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
||||
: m_algoswap(16), m_numIters(0)
|
||||
{
|
||||
allocate(rows, cols);
|
||||
allocate(rows, cols, computationOptions);
|
||||
}
|
||||
|
||||
/** \brief Constructor performing the decomposition of given matrix.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non - default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
BDCSVD(const MatrixType& matrix)
|
||||
BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
||||
: m_algoswap(16), m_numIters(0)
|
||||
{
|
||||
compute(matrix);
|
||||
compute(matrix, computationOptions);
|
||||
}
|
||||
|
||||
~BDCSVD()
|
||||
@ -155,8 +156,25 @@ public:
|
||||
/** \brief Method performing the decomposition of given matrix using custom options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non - default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
BDCSVD& compute(const MatrixType& matrix);
|
||||
BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using current options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
*
|
||||
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
|
||||
*/
|
||||
BDCSVD& compute(const MatrixType& matrix)
|
||||
{
|
||||
return compute(matrix, this->m_computationOptions);
|
||||
}
|
||||
|
||||
void setSwitchSize(int s)
|
||||
{
|
||||
@ -165,7 +183,7 @@ public:
|
||||
}
|
||||
|
||||
private:
|
||||
void allocate(Index rows, Index cols);
|
||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
|
||||
void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
|
||||
void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus);
|
||||
@ -178,8 +196,6 @@ private:
|
||||
void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
|
||||
void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1);
|
||||
static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift);
|
||||
template<typename SVDType>
|
||||
void computeBaseCase(SVDType& svd, Index n, Index firstCol, Index firstRowW, Index firstColW, Index shift);
|
||||
|
||||
protected:
|
||||
MatrixXr m_naiveU, m_naiveV;
|
||||
@ -192,10 +208,10 @@ protected:
|
||||
|
||||
using Base::m_singularValues;
|
||||
using Base::m_diagSize;
|
||||
using Base::ShouldComputeFullU;
|
||||
using Base::ShouldComputeFullV;
|
||||
using Base::ShouldComputeThinU;
|
||||
using Base::ShouldComputeThinV;
|
||||
using Base::m_computeFullU;
|
||||
using Base::m_computeFullV;
|
||||
using Base::m_computeThinU;
|
||||
using Base::m_computeThinV;
|
||||
using Base::m_matrixU;
|
||||
using Base::m_matrixV;
|
||||
using Base::m_info;
|
||||
@ -208,12 +224,12 @@ public:
|
||||
|
||||
|
||||
// Method to allocate and initialize matrix and attributes
|
||||
template<typename MatrixType, int Options>
|
||||
void BDCSVD<MatrixType, Options>::allocate(Eigen::Index rows, Eigen::Index cols)
|
||||
template<typename MatrixType>
|
||||
void BDCSVD<MatrixType>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions)
|
||||
{
|
||||
m_isTranspose = (cols > rows);
|
||||
|
||||
if (Base::allocate(rows, cols))
|
||||
if (Base::allocate(rows, cols, computationOptions))
|
||||
return;
|
||||
|
||||
m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
|
||||
@ -231,13 +247,13 @@ void BDCSVD<MatrixType, Options>::allocate(Eigen::Index rows, Eigen::Index cols)
|
||||
m_workspaceI.resize(3*m_diagSize);
|
||||
}// end allocate
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
BDCSVD<MatrixType, Options>& BDCSVD<MatrixType, Options>::compute(const MatrixType& matrix)
|
||||
template<typename MatrixType>
|
||||
BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
|
||||
{
|
||||
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
||||
std::cout << "\n\n\n======================================================================================================================\n\n\n";
|
||||
#endif
|
||||
allocate(matrix.rows(), matrix.cols());
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
||||
using std::abs;
|
||||
|
||||
const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
|
||||
@ -246,7 +262,7 @@ BDCSVD<MatrixType, Options>& BDCSVD<MatrixType, Options>::compute(const MatrixTy
|
||||
if(matrix.cols() < m_algoswap)
|
||||
{
|
||||
// FIXME this line involves temporaries
|
||||
JacobiSVD<MatrixType, Options> jsvd(matrix);
|
||||
JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
|
||||
m_isInitialized = true;
|
||||
m_info = jsvd.info();
|
||||
if (m_info == Success || m_info == NoConvergence) {
|
||||
@ -317,21 +333,21 @@ BDCSVD<MatrixType, Options>& BDCSVD<MatrixType, Options>::compute(const MatrixTy
|
||||
}// end compute
|
||||
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
template<typename MatrixType>
|
||||
template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
|
||||
void BDCSVD<MatrixType, Options>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
|
||||
void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
|
||||
{
|
||||
// Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
|
||||
if (computeU())
|
||||
{
|
||||
Index Ucols = ShouldComputeThinU ? m_diagSize : householderU.cols();
|
||||
Index Ucols = m_computeThinU ? m_diagSize : householderU.cols();
|
||||
m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
|
||||
m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
|
||||
householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer
|
||||
}
|
||||
if (computeV())
|
||||
{
|
||||
Index Vcols = ShouldComputeThinV ? m_diagSize : householderV.cols();
|
||||
Index Vcols = m_computeThinV ? m_diagSize : householderV.cols();
|
||||
m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
|
||||
m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
|
||||
householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer
|
||||
@ -346,8 +362,8 @@ void BDCSVD<MatrixType, Options>::copyUV(const HouseholderU &householderU, const
|
||||
* We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large
|
||||
* enough.
|
||||
*/
|
||||
template<typename MatrixType, int Options>
|
||||
void BDCSVD<MatrixType, Options>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1)
|
||||
template<typename MatrixType>
|
||||
void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1)
|
||||
{
|
||||
Index n = A.rows();
|
||||
if(n>100)
|
||||
@ -387,26 +403,7 @@ void BDCSVD<MatrixType, Options>::structured_update(Block<MatrixXr,Dynamic,Dynam
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
template<typename SVDType>
|
||||
void BDCSVD<MatrixType, Options>::computeBaseCase(SVDType& svd, Index n, Index firstCol, Index firstRowW, Index firstColW, Index shift)
|
||||
{
|
||||
svd.compute(m_computed.block(firstCol, firstCol, n + 1, n));
|
||||
m_info = svd.info();
|
||||
if (m_info != Success && m_info != NoConvergence) return;
|
||||
if (m_compU)
|
||||
m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = svd.matrixU();
|
||||
else
|
||||
{
|
||||
m_naiveU.row(0).segment(firstCol, n + 1).real() = svd.matrixU().row(0);
|
||||
m_naiveU.row(1).segment(firstCol, n + 1).real() = svd.matrixU().row(n);
|
||||
}
|
||||
if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = svd.matrixV();
|
||||
m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
|
||||
m_computed.diagonal().segment(firstCol + shift, n) = svd.singularValues().head(n);
|
||||
}
|
||||
|
||||
// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
|
||||
// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
|
||||
// place of the submatrix we are currently working on.
|
||||
|
||||
//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
|
||||
@ -416,8 +413,8 @@ void BDCSVD<MatrixType, Options>::computeBaseCase(SVDType& svd, Index n, Index f
|
||||
//@param firstColW : Same as firstRowW with the column.
|
||||
//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
|
||||
// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
|
||||
template<typename MatrixType, int Options>
|
||||
void BDCSVD<MatrixType, Options>::divide(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
|
||||
template<typename MatrixType>
|
||||
void BDCSVD<MatrixType>::divide(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
|
||||
{
|
||||
// requires rows = cols + 1;
|
||||
using std::pow;
|
||||
@ -435,17 +432,20 @@ void BDCSVD<MatrixType, Options>::divide(Eigen::Index firstCol, Eigen::Index las
|
||||
// matrices.
|
||||
if (n < m_algoswap)
|
||||
{
|
||||
// FIXME this block involves temporaries
|
||||
if (m_compV)
|
||||
{
|
||||
JacobiSVD<MatrixXr, ComputeFullU | ComputeFullV> baseSvd;
|
||||
computeBaseCase(baseSvd, n, firstCol, firstRowW, firstColW, shift);
|
||||
}
|
||||
// FIXME this line involves temporaries
|
||||
JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
|
||||
m_info = b.info();
|
||||
if (m_info != Success && m_info != NoConvergence) return;
|
||||
if (m_compU)
|
||||
m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
|
||||
else
|
||||
{
|
||||
JacobiSVD<MatrixXr, ComputeFullU> baseSvd;
|
||||
computeBaseCase(baseSvd, n, firstCol, firstRowW, firstColW, shift);
|
||||
m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
|
||||
m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
|
||||
}
|
||||
if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
|
||||
m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
|
||||
m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
|
||||
return;
|
||||
}
|
||||
// We use the divide and conquer algorithm
|
||||
@ -597,8 +597,8 @@ void BDCSVD<MatrixType, Options>::divide(Eigen::Index firstCol, Eigen::Index las
|
||||
// TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
|
||||
// handling of round-off errors, be consistent in ordering
|
||||
// For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
|
||||
template <typename MatrixType, int Options>
|
||||
void BDCSVD<MatrixType, Options>::computeSVDofM(Eigen::Index firstCol, Eigen::Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
|
||||
template <typename MatrixType>
|
||||
void BDCSVD<MatrixType>::computeSVDofM(Eigen::Index firstCol, Eigen::Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
|
||||
{
|
||||
const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
|
||||
using std::abs;
|
||||
@ -725,8 +725,8 @@ void BDCSVD<MatrixType, Options>::computeSVDofM(Eigen::Index firstCol, Eigen::In
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename MatrixType, int Options>
|
||||
typename BDCSVD<MatrixType, Options>::RealScalar BDCSVD<MatrixType, Options>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
|
||||
template <typename MatrixType>
|
||||
typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
|
||||
{
|
||||
Index m = perm.size();
|
||||
RealScalar res = Literal(1);
|
||||
@ -741,9 +741,9 @@ typename BDCSVD<MatrixType, Options>::RealScalar BDCSVD<MatrixType, Options>::se
|
||||
|
||||
}
|
||||
|
||||
template <typename MatrixType, int Options>
|
||||
void BDCSVD<MatrixType, Options>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm,
|
||||
VectorType& singVals, ArrayRef shifts, ArrayRef mus)
|
||||
template <typename MatrixType>
|
||||
void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm,
|
||||
VectorType& singVals, ArrayRef shifts, ArrayRef mus)
|
||||
{
|
||||
using std::abs;
|
||||
using std::swap;
|
||||
@ -987,8 +987,8 @@ void BDCSVD<MatrixType, Options>::computeSingVals(const ArrayRef& col0, const Ar
|
||||
|
||||
|
||||
// zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1)
|
||||
template <typename MatrixType, int Options>
|
||||
void BDCSVD<MatrixType, Options>::perturbCol0
|
||||
template <typename MatrixType>
|
||||
void BDCSVD<MatrixType>::perturbCol0
|
||||
(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
|
||||
const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat)
|
||||
{
|
||||
@ -1067,8 +1067,8 @@ void BDCSVD<MatrixType, Options>::perturbCol0
|
||||
}
|
||||
|
||||
// compute singular vectors
|
||||
template <typename MatrixType, int Options>
|
||||
void BDCSVD<MatrixType, Options>::computeSingVecs
|
||||
template <typename MatrixType>
|
||||
void BDCSVD<MatrixType>::computeSingVecs
|
||||
(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
|
||||
const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V)
|
||||
{
|
||||
@ -1113,8 +1113,8 @@ void BDCSVD<MatrixType, Options>::computeSingVecs
|
||||
// page 12_13
|
||||
// i >= 1, di almost null and zi non null.
|
||||
// We use a rotation to zero out zi applied to the left of M
|
||||
template <typename MatrixType, int Options>
|
||||
void BDCSVD<MatrixType, Options>::deflation43(Eigen::Index firstCol, Eigen::Index shift, Eigen::Index i, Eigen::Index size)
|
||||
template <typename MatrixType>
|
||||
void BDCSVD<MatrixType>::deflation43(Eigen::Index firstCol, Eigen::Index shift, Eigen::Index i, Eigen::Index size)
|
||||
{
|
||||
using std::abs;
|
||||
using std::sqrt;
|
||||
@ -1142,8 +1142,8 @@ void BDCSVD<MatrixType, Options>::deflation43(Eigen::Index firstCol, Eigen::Inde
|
||||
// i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M)
|
||||
// We apply two rotations to have zj = 0;
|
||||
// TODO deflation44 is still broken and not properly tested
|
||||
template <typename MatrixType, int Options>
|
||||
void BDCSVD<MatrixType, Options>::deflation44(Eigen::Index firstColu , Eigen::Index firstColm, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index i, Eigen::Index j, Eigen::Index size)
|
||||
template <typename MatrixType>
|
||||
void BDCSVD<MatrixType>::deflation44(Eigen::Index firstColu , Eigen::Index firstColm, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index i, Eigen::Index j, Eigen::Index size)
|
||||
{
|
||||
using std::abs;
|
||||
using std::sqrt;
|
||||
@ -1182,8 +1182,8 @@ void BDCSVD<MatrixType, Options>::deflation44(Eigen::Index firstColu , Eigen::In
|
||||
|
||||
|
||||
// acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
|
||||
template <typename MatrixType, int Options>
|
||||
void BDCSVD<MatrixType, Options>::deflation(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index k, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
|
||||
template <typename MatrixType>
|
||||
void BDCSVD<MatrixType>::deflation(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index k, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
@ -1361,11 +1361,10 @@ void BDCSVD<MatrixType, Options>::deflation(Eigen::Index firstCol, Eigen::Index
|
||||
* \sa class BDCSVD
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int Options>
|
||||
BDCSVD<typename MatrixBase<Derived>::PlainObject, Options>
|
||||
MatrixBase<Derived>::bdcSvd() const
|
||||
BDCSVD<typename MatrixBase<Derived>::PlainObject>
|
||||
MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
|
||||
{
|
||||
return BDCSVD<PlainObject, Options>(*this);
|
||||
return BDCSVD<PlainObject>(*this, computationOptions);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
@ -13,20 +13,12 @@
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
enum OptionsMasks {
|
||||
QRPreconditionerBits = NoQRPreconditioner |
|
||||
HouseholderQRPreconditioner |
|
||||
ColPivHouseholderQRPreconditioner |
|
||||
FullPivHouseholderQRPreconditioner
|
||||
};
|
||||
|
||||
// forward declaration (needed by ICC)
|
||||
// the empty body is required by MSVC
|
||||
template<typename MatrixType, int Options,
|
||||
template<typename MatrixType, int QRPreconditioner,
|
||||
bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
|
||||
struct svd_precondition_2x2_block_to_be_real {};
|
||||
|
||||
@ -54,16 +46,16 @@ struct qr_preconditioner_should_do_anything
|
||||
};
|
||||
};
|
||||
|
||||
template<typename MatrixType, int Options, int QRPreconditioner, int Case,
|
||||
template<typename MatrixType, int QRPreconditioner, int Case,
|
||||
bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
|
||||
> struct qr_preconditioner_impl {};
|
||||
|
||||
template<typename MatrixType, int Options, int QRPreconditioner, int Case>
|
||||
class qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, Case, false>
|
||||
template<typename MatrixType, int QRPreconditioner, int Case>
|
||||
class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
|
||||
{
|
||||
public:
|
||||
void allocate(const JacobiSVD<MatrixType, Options>&) {}
|
||||
bool run(JacobiSVD<MatrixType, Options>&, const MatrixType&)
|
||||
void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
|
||||
bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
@ -71,71 +63,65 @@ public:
|
||||
|
||||
/*** preconditioner using FullPivHouseholderQR ***/
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
class qr_preconditioner_impl<MatrixType, Options, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef JacobiSVD<MatrixType, Options> SVDType;
|
||||
|
||||
enum
|
||||
{
|
||||
WorkspaceSize = MatrixType::RowsAtCompileTime,
|
||||
MaxWorkspaceSize = MatrixType::MaxRowsAtCompileTime
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
|
||||
};
|
||||
typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
|
||||
|
||||
typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;
|
||||
|
||||
void allocate(const SVDType& svd)
|
||||
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.ShouldComputeFullU) m_workspace.resize(svd.rows());
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
}
|
||||
|
||||
bool run(SVDType& svd, const MatrixType& matrix)
|
||||
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
||||
if(svd.ShouldComputeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef FullPivHouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
WorkspaceType m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
class qr_preconditioner_impl<MatrixType, Options, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef JacobiSVD<MatrixType, Options> SVDType;
|
||||
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MatrixOptions = MatrixType::Options
|
||||
Options = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef typename internal::make_proper_matrix_type<
|
||||
Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime
|
||||
Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
|
||||
>::type TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const SVDType& svd)
|
||||
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
@ -143,66 +129,54 @@ public:
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
}
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
if (svd.ShouldComputeFullV) m_workspace.resize(svd.cols());
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(SVDType& svd, const MatrixType& matrix)
|
||||
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
m_adjoint = matrix.adjoint();
|
||||
m_qr.compute(m_adjoint);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
||||
if(svd.ShouldComputeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
typename plain_row_type<MatrixType>::type m_workspace;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
/*** preconditioner using ColPivHouseholderQR ***/
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
class qr_preconditioner_impl<MatrixType, Options, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef JacobiSVD<MatrixType, Options> SVDType;
|
||||
|
||||
enum
|
||||
{
|
||||
WorkspaceSize = internal::traits<SVDType>::MatrixUColsAtCompileTime,
|
||||
MaxWorkspaceSize = internal::traits<SVDType>::MatrixUMaxColsAtCompileTime
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;
|
||||
|
||||
void allocate(const SVDType& svd)
|
||||
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.ShouldComputeFullU) m_workspace.resize(svd.rows());
|
||||
else if (svd.ShouldComputeThinU) m_workspace.resize(svd.cols());
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(SVDType& svd, const MatrixType& matrix)
|
||||
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
||||
if(svd.ShouldComputeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
else if(svd.ShouldComputeThinU)
|
||||
if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
else if(svd.m_computeThinU)
|
||||
{
|
||||
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
|
||||
@ -216,46 +190,40 @@ public:
|
||||
private:
|
||||
typedef ColPivHouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
WorkspaceType m_workspace;
|
||||
typename internal::plain_col_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
class qr_preconditioner_impl<MatrixType, Options, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef JacobiSVD<MatrixType, Options> SVDType;
|
||||
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MatrixOptions = MatrixType::Options,
|
||||
WorkspaceSize = internal::traits<SVDType>::MatrixVColsAtCompileTime,
|
||||
MaxWorkspaceSize = internal::traits<SVDType>::MatrixVMaxColsAtCompileTime
|
||||
Options = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, WorkspaceSize, 1, ColMajor, MaxWorkspaceSize, 1> WorkspaceType;
|
||||
|
||||
typedef typename internal::make_proper_matrix_type<
|
||||
Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime
|
||||
Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
|
||||
>::type TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const SVDType& svd)
|
||||
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
}
|
||||
if (svd.ShouldComputeFullV) m_workspace.resize(svd.cols());
|
||||
else if (svd.ShouldComputeThinV) m_workspace.resize(svd.rows());
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
}
|
||||
|
||||
bool run(SVDType& svd, const MatrixType& matrix)
|
||||
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
@ -263,8 +231,8 @@ public:
|
||||
m_qr.compute(m_adjoint);
|
||||
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
||||
if(svd.ShouldComputeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
else if(svd.ShouldComputeThinV)
|
||||
if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
else if(svd.m_computeThinV)
|
||||
{
|
||||
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
|
||||
@ -279,45 +247,34 @@ private:
|
||||
typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
WorkspaceType m_workspace;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
/*** preconditioner using HouseholderQR ***/
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
class qr_preconditioner_impl<MatrixType, Options, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef JacobiSVD<MatrixType, Options> SVDType;
|
||||
|
||||
enum
|
||||
{
|
||||
WorkspaceSize = internal::traits<SVDType>::MatrixUColsAtCompileTime,
|
||||
MaxWorkspaceSize = internal::traits<SVDType>::MatrixUMaxColsAtCompileTime
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;
|
||||
|
||||
void allocate(const SVDType& svd)
|
||||
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.ShouldComputeFullU) m_workspace.resize(svd.rows());
|
||||
else if (svd.ShouldComputeThinU) m_workspace.resize(svd.cols());
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(SVDType& svd, const MatrixType& matrix)
|
||||
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
||||
if(svd.ShouldComputeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
else if(svd.ShouldComputeThinU)
|
||||
if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
else if(svd.m_computeThinU)
|
||||
{
|
||||
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
|
||||
@ -327,50 +284,43 @@ public:
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef HouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
WorkspaceType m_workspace;
|
||||
typename internal::plain_col_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
class qr_preconditioner_impl<MatrixType, Options, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef JacobiSVD<MatrixType, Options> SVDType;
|
||||
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MatrixOptions = MatrixType::Options,
|
||||
WorkspaceSize = internal::traits<SVDType>::MatrixVColsAtCompileTime,
|
||||
MaxWorkspaceSize = internal::traits<SVDType>::MatrixVMaxColsAtCompileTime
|
||||
Options = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, WorkspaceSize, 1, ColMajor, MaxWorkspaceSize, 1> WorkspaceType;
|
||||
|
||||
typedef typename internal::make_proper_matrix_type<
|
||||
Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime
|
||||
Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
|
||||
>::type TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const SVDType& svd)
|
||||
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
}
|
||||
if (svd.ShouldComputeFullV) m_workspace.resize(svd.cols());
|
||||
else if (svd.ShouldComputeThinV) m_workspace.resize(svd.rows());
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
}
|
||||
|
||||
bool run(SVDType& svd, const MatrixType& matrix)
|
||||
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
@ -378,8 +328,8 @@ public:
|
||||
m_qr.compute(m_adjoint);
|
||||
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
||||
if(svd.ShouldComputeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
else if(svd.ShouldComputeThinV)
|
||||
if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
else if(svd.m_computeThinV)
|
||||
{
|
||||
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
|
||||
@ -394,7 +344,7 @@ private:
|
||||
typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
WorkspaceType m_workspace;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
/*** 2x2 SVD implementation
|
||||
@ -402,18 +352,18 @@ private:
|
||||
*** JacobiSVD consists in performing a series of 2x2 SVD subproblems
|
||||
***/
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, false>
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, Options> SVD;
|
||||
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; }
|
||||
};
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, true>
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, Options> SVD;
|
||||
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry)
|
||||
@ -475,9 +425,9 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, true>
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType_, int Options>
|
||||
struct traits<JacobiSVD<MatrixType_,Options> >
|
||||
: svd_traits<MatrixType_, Options>
|
||||
template<typename MatrixType_, int QRPreconditioner>
|
||||
struct traits<JacobiSVD<MatrixType_,QRPreconditioner> >
|
||||
: traits<MatrixType_>
|
||||
{
|
||||
typedef MatrixType_ MatrixType;
|
||||
};
|
||||
@ -492,9 +442,8 @@ struct traits<JacobiSVD<MatrixType_,Options> >
|
||||
* \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
|
||||
*
|
||||
* \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition
|
||||
* \tparam Options this optional parameter allows one to specify the type of QR decomposition that will be used internally
|
||||
* for the R-SVD step for non-square matrices. Additionally, it allows one to specify whether to compute
|
||||
* thin or full unitaries \a U and \a V. See discussion of possible values below.
|
||||
* \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
|
||||
* for the R-SVD step for non-square matrices. See discussion of possible values below.
|
||||
*
|
||||
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
|
||||
* \f[ A = U S V^* \f]
|
||||
@ -523,7 +472,7 @@ struct traits<JacobiSVD<MatrixType_,Options> >
|
||||
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
|
||||
* terminate in finite (and reasonable) time.
|
||||
*
|
||||
* The possible QR preconditioners that can be set with Options template parameter are:
|
||||
* The possible values for QRPreconditioner are:
|
||||
* \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
|
||||
* \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
|
||||
* Contrary to other QRs, it doesn't allow computing thin unitaries.
|
||||
@ -536,16 +485,10 @@ struct traits<JacobiSVD<MatrixType_,Options> >
|
||||
* faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
|
||||
* if QR preconditioning is needed before applying it anyway.
|
||||
*
|
||||
* One may also use the Options template parameter to specify how the unitaries should be computed. The options are #ComputeThinU,
|
||||
* #ComputeThinV, #ComputeFullU, #ComputeFullV. It is not possible to request both a thin and full unitary.
|
||||
* So, it is not possible to use ComputeThinU | ComputeFullU or ComputeThinV | ComputeFullV. By default, unitaries will not be computed.
|
||||
*
|
||||
* You can set the QRPreconditioner and unitary options together: JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner | ComputeThinU | ComputeFullV>
|
||||
*
|
||||
* \sa MatrixBase::jacobiSvd()
|
||||
*/
|
||||
template<typename MatrixType_, int Options> class JacobiSVD
|
||||
: public SVDBase<JacobiSVD<MatrixType_,Options> >
|
||||
template<typename MatrixType_, int QRPreconditioner> class JacobiSVD
|
||||
: public SVDBase<JacobiSVD<MatrixType_,QRPreconditioner> >
|
||||
{
|
||||
typedef SVDBase<JacobiSVD> Base;
|
||||
public:
|
||||
@ -554,7 +497,6 @@ template<typename MatrixType_, int Options> class JacobiSVD
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
enum {
|
||||
QRPreconditioner = Options & internal::QRPreconditionerBits,
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
|
||||
@ -567,6 +509,9 @@ template<typename MatrixType_, int Options> class JacobiSVD
|
||||
typedef typename Base::MatrixUType MatrixUType;
|
||||
typedef typename Base::MatrixVType MatrixVType;
|
||||
typedef typename Base::SingularValuesType SingularValuesType;
|
||||
|
||||
typedef typename internal::plain_row_type<MatrixType>::type RowType;
|
||||
typedef typename internal::plain_col_type<MatrixType>::type ColType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
|
||||
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
|
||||
WorkMatrixType;
|
||||
@ -579,31 +524,55 @@ template<typename MatrixType_, int Options> class JacobiSVD
|
||||
JacobiSVD()
|
||||
{}
|
||||
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
* Like the default constructor but with preallocation of the internal data
|
||||
* according to the specified problem size.
|
||||
* \sa JacobiSVD()
|
||||
*/
|
||||
JacobiSVD(Index rows, Index cols)
|
||||
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
||||
{
|
||||
allocate(rows, cols);
|
||||
allocate(rows, cols, computationOptions);
|
||||
}
|
||||
|
||||
/** \brief Constructor performing the decomposition of given matrix.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
explicit JacobiSVD(const MatrixType& matrix)
|
||||
explicit JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
||||
{
|
||||
compute(matrix);
|
||||
compute(matrix, computationOptions);
|
||||
}
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using custom options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
JacobiSVD& compute(const MatrixType& matrix);
|
||||
JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using current options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
*
|
||||
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
|
||||
*/
|
||||
JacobiSVD& compute(const MatrixType& matrix)
|
||||
{
|
||||
return compute(matrix, m_computationOptions);
|
||||
}
|
||||
|
||||
using Base::computeU;
|
||||
using Base::computeV;
|
||||
@ -612,7 +581,7 @@ template<typename MatrixType_, int Options> class JacobiSVD
|
||||
using Base::rank;
|
||||
|
||||
private:
|
||||
void allocate(Index rows, Index cols);
|
||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
|
||||
protected:
|
||||
using Base::m_matrixU;
|
||||
@ -622,49 +591,84 @@ template<typename MatrixType_, int Options> class JacobiSVD
|
||||
using Base::m_isInitialized;
|
||||
using Base::m_isAllocated;
|
||||
using Base::m_usePrescribedThreshold;
|
||||
using Base::m_computeFullU;
|
||||
using Base::m_computeThinU;
|
||||
using Base::m_computeFullV;
|
||||
using Base::m_computeThinV;
|
||||
using Base::m_computationOptions;
|
||||
using Base::m_nonzeroSingularValues;
|
||||
using Base::m_rows;
|
||||
using Base::m_cols;
|
||||
using Base::m_diagSize;
|
||||
using Base::m_prescribedThreshold;
|
||||
using Base::ShouldComputeFullU;
|
||||
using Base::ShouldComputeThinU;
|
||||
using Base::ShouldComputeFullV;
|
||||
using Base::ShouldComputeThinV;
|
||||
WorkMatrixType m_workMatrix;
|
||||
|
||||
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES((ShouldComputeThinU != 0 || ShouldComputeThinV != 0), QRPreconditioner != FullPivHouseholderQRPreconditioner),
|
||||
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
|
||||
"Use the ColPivHouseholderQR preconditioner instead.")
|
||||
|
||||
template<typename MatrixType__, int Options_, bool IsComplex_>
|
||||
template<typename MatrixType__, int QRPreconditioner_, bool IsComplex_>
|
||||
friend struct internal::svd_precondition_2x2_block_to_be_real;
|
||||
template<typename MatrixType__, int Options_, int QRPreconditioner_, int Case_, bool DoAnything_>
|
||||
template<typename MatrixType__, int QRPreconditioner_, int Case_, bool DoAnything_>
|
||||
friend struct internal::qr_preconditioner_impl;
|
||||
|
||||
internal::qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
|
||||
internal::qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
|
||||
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
|
||||
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
|
||||
MatrixType m_scaledMatrix;
|
||||
};
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
void JacobiSVD<MatrixType, Options>::allocate(Eigen::Index rows, Eigen::Index cols)
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions)
|
||||
{
|
||||
if (Base::allocate(rows, cols))
|
||||
return;
|
||||
eigen_assert(rows >= 0 && cols >= 0);
|
||||
|
||||
if (m_isAllocated &&
|
||||
rows == m_rows &&
|
||||
cols == m_cols &&
|
||||
computationOptions == m_computationOptions)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
m_info = Success;
|
||||
m_isInitialized = false;
|
||||
m_isAllocated = true;
|
||||
m_computationOptions = computationOptions;
|
||||
m_computeFullU = (computationOptions & ComputeFullU) != 0;
|
||||
m_computeThinU = (computationOptions & ComputeThinU) != 0;
|
||||
m_computeFullV = (computationOptions & ComputeFullV) != 0;
|
||||
m_computeThinV = (computationOptions & ComputeThinV) != 0;
|
||||
eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
|
||||
eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
|
||||
eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
|
||||
"JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
|
||||
if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
|
||||
{
|
||||
eigen_assert(!(m_computeThinU || m_computeThinV) &&
|
||||
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
|
||||
"Use the ColPivHouseholderQR preconditioner instead.");
|
||||
}
|
||||
m_diagSize = (std::min)(m_rows, m_cols);
|
||||
m_singularValues.resize(m_diagSize);
|
||||
if(RowsAtCompileTime==Dynamic)
|
||||
m_matrixU.resize(m_rows, m_computeFullU ? m_rows
|
||||
: m_computeThinU ? m_diagSize
|
||||
: 0);
|
||||
if(ColsAtCompileTime==Dynamic)
|
||||
m_matrixV.resize(m_cols, m_computeFullV ? m_cols
|
||||
: m_computeThinV ? m_diagSize
|
||||
: 0);
|
||||
m_workMatrix.resize(m_diagSize, m_diagSize);
|
||||
|
||||
if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this);
|
||||
if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this);
|
||||
if(m_rows!=m_cols) m_scaledMatrix.resize(rows,cols);
|
||||
}
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
JacobiSVD<MatrixType, Options>&
|
||||
JacobiSVD<MatrixType, Options>::compute(const MatrixType& matrix)
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
JacobiSVD<MatrixType, QRPreconditioner>&
|
||||
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
|
||||
{
|
||||
using std::abs;
|
||||
allocate(matrix.rows(), matrix.cols());
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
||||
|
||||
// currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
|
||||
// only worsening the precision of U and V as we accumulate more rotations
|
||||
@ -693,10 +697,10 @@ JacobiSVD<MatrixType, Options>::compute(const MatrixType& matrix)
|
||||
else
|
||||
{
|
||||
m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale;
|
||||
if(ShouldComputeFullU) m_matrixU.setIdentity(m_rows,m_rows);
|
||||
if(ShouldComputeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
|
||||
if(ShouldComputeFullV) m_matrixV.setIdentity(m_cols,m_cols);
|
||||
if(ShouldComputeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
|
||||
if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
|
||||
if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
|
||||
if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
|
||||
if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
|
||||
}
|
||||
|
||||
/*** step 2. The main Jacobi SVD iteration. ***/
|
||||
@ -722,7 +726,7 @@ JacobiSVD<MatrixType, Options>::compute(const MatrixType& matrix)
|
||||
finished = false;
|
||||
// perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
|
||||
// the complex to real operation returns true if the updated 2x2 block is not already diagonal
|
||||
if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(m_workMatrix, *this, p, q, maxDiagEntry))
|
||||
if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q, maxDiagEntry))
|
||||
{
|
||||
JacobiRotation<RealScalar> j_left, j_right;
|
||||
internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
|
||||
@ -799,11 +803,10 @@ JacobiSVD<MatrixType, Options>::compute(const MatrixType& matrix)
|
||||
* \sa class JacobiSVD
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int Options>
|
||||
JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options>
|
||||
MatrixBase<Derived>::jacobiSvd() const
|
||||
JacobiSVD<typename MatrixBase<Derived>::PlainObject>
|
||||
MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
|
||||
{
|
||||
return JacobiSVD<PlainObject, Options>(*this);
|
||||
return JacobiSVD<PlainObject>(*this, computationOptions);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
@ -39,15 +39,15 @@ namespace Eigen {
|
||||
|
||||
/** \internal Specialization for the data types supported by LAPACKe */
|
||||
|
||||
#define EIGEN_LAPACKE_SVD(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW, OPTIONS) \
|
||||
#define EIGEN_LAPACKE_SVD(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW) \
|
||||
template<> inline \
|
||||
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, OPTIONS>& \
|
||||
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, OPTIONS>::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix) \
|
||||
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>& \
|
||||
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix, unsigned int computationOptions) \
|
||||
{ \
|
||||
typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> MatrixType; \
|
||||
/*typedef MatrixType::Scalar Scalar;*/ \
|
||||
/*typedef MatrixType::RealScalar RealScalar;*/ \
|
||||
allocate(matrix.rows(), matrix.cols()); \
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions); \
|
||||
\
|
||||
/*const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();*/ \
|
||||
m_nonzeroSingularValues = m_diagSize; \
|
||||
@ -56,14 +56,14 @@ JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, OPTION
|
||||
lapack_int matrix_order = LAPACKE_COLROW; \
|
||||
char jobu, jobvt; \
|
||||
LAPACKE_TYPE *u, *vt, dummy; \
|
||||
jobu = (ShouldComputeFullU) ? 'A' : (ShouldComputeThinU) ? 'S' : 'N'; \
|
||||
jobvt = (ShouldComputeFullV) ? 'A' : (ShouldComputeThinV) ? 'S' : 'N'; \
|
||||
jobu = (m_computeFullU) ? 'A' : (m_computeThinU) ? 'S' : 'N'; \
|
||||
jobvt = (m_computeFullV) ? 'A' : (m_computeThinV) ? 'S' : 'N'; \
|
||||
if (computeU()) { \
|
||||
ldu = internal::convert_index<lapack_int>(m_matrixU.outerStride()); \
|
||||
u = (LAPACKE_TYPE*)m_matrixU.data(); \
|
||||
} else { ldu=1; u=&dummy; }\
|
||||
MatrixType localV; \
|
||||
lapack_int vt_rows = (ShouldComputeFullV) ? internal::convert_index<lapack_int>(m_cols) : (ShouldComputeThinV) ? internal::convert_index<lapack_int>(m_diagSize) : 1; \
|
||||
lapack_int vt_rows = (m_computeFullV) ? internal::convert_index<lapack_int>(m_cols) : (m_computeThinV) ? internal::convert_index<lapack_int>(m_diagSize) : 1; \
|
||||
if (computeV()) { \
|
||||
localV.resize(vt_rows, m_cols); \
|
||||
ldvt = internal::convert_index<lapack_int>(localV.outerStride()); \
|
||||
@ -78,26 +78,15 @@ JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, OPTION
|
||||
return *this; \
|
||||
}
|
||||
|
||||
#define EIGEN_LAPACK_SVD_OPTIONS(OPTIONS) \
|
||||
EIGEN_LAPACKE_SVD(double, double, double, d, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
|
||||
EIGEN_LAPACKE_SVD(float, float, float , s, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
|
||||
EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
|
||||
EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
|
||||
\
|
||||
EIGEN_LAPACKE_SVD(double, double, double, d, RowMajor, LAPACK_ROW_MAJOR, OPTIONS) \
|
||||
EIGEN_LAPACKE_SVD(float, float, float , s, RowMajor, LAPACK_ROW_MAJOR, OPTIONS) \
|
||||
EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, RowMajor, LAPACK_ROW_MAJOR, OPTIONS) \
|
||||
EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, RowMajor, LAPACK_ROW_MAJOR, OPTIONS)
|
||||
EIGEN_LAPACKE_SVD(double, double, double, d, ColMajor, LAPACK_COL_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(float, float, float , s, ColMajor, LAPACK_COL_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, ColMajor, LAPACK_COL_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, ColMajor, LAPACK_COL_MAJOR)
|
||||
|
||||
EIGEN_LAPACK_SVD_OPTIONS(0)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeThinU)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeThinV)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeFullU)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeFullV)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeThinU | ComputeThinV)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeFullU | ComputeFullV)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeThinU | ComputeFullV)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeFullU | ComputeThinV)
|
||||
EIGEN_LAPACKE_SVD(double, double, double, d, RowMajor, LAPACK_ROW_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(float, float, float , s, RowMajor, LAPACK_ROW_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, RowMajor, LAPACK_ROW_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, RowMajor, LAPACK_ROW_MAJOR)
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
|
@ -21,7 +21,6 @@
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived> struct traits<SVDBase<Derived> >
|
||||
: traits<Derived>
|
||||
{
|
||||
@ -30,32 +29,6 @@ template<typename Derived> struct traits<SVDBase<Derived> >
|
||||
typedef int StorageIndex;
|
||||
enum { Flags = 0 };
|
||||
};
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
struct svd_traits : traits<MatrixType>
|
||||
{
|
||||
enum {
|
||||
ShouldComputeFullU = Options & ComputeFullU,
|
||||
ShouldComputeThinU = Options & ComputeThinU,
|
||||
ShouldComputeFullV = Options & ComputeFullV,
|
||||
ShouldComputeThinV = Options & ComputeThinV,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime),
|
||||
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::MaxRowsAtCompileTime,MatrixType::MaxColsAtCompileTime),
|
||||
MatrixUColsAtCompileTime = ShouldComputeFullU ? MatrixType::RowsAtCompileTime
|
||||
: ShouldComputeThinU ? DiagSizeAtCompileTime
|
||||
: Dynamic,
|
||||
MatrixVColsAtCompileTime = ShouldComputeFullV ? MatrixType::ColsAtCompileTime
|
||||
: ShouldComputeThinV ? DiagSizeAtCompileTime
|
||||
: Dynamic,
|
||||
MatrixUMaxColsAtCompileTime = ShouldComputeFullU ? MatrixType::MaxRowsAtCompileTime
|
||||
: ShouldComputeThinU ? MaxDiagSizeAtCompileTime
|
||||
: Dynamic,
|
||||
MatrixVMaxColsAtCompileTime = ShouldComputeFullV ? MatrixType::MaxColsAtCompileTime
|
||||
: ShouldComputeThinV ? MaxDiagSizeAtCompileTime
|
||||
: Dynamic
|
||||
};
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
@ -102,33 +75,19 @@ public:
|
||||
typedef typename Eigen::internal::traits<SVDBase>::StorageIndex StorageIndex;
|
||||
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
||||
enum {
|
||||
ShouldComputeFullU = internal::traits<Derived>::ShouldComputeFullU,
|
||||
ShouldComputeThinU = internal::traits<Derived>::ShouldComputeThinU,
|
||||
ShouldComputeFullV = internal::traits<Derived>::ShouldComputeFullV,
|
||||
ShouldComputeThinV = internal::traits<Derived>::ShouldComputeThinV,
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MatrixOptions = MatrixType::Options,
|
||||
MatrixUColsAtCompileTime = internal::traits<Derived>::MatrixUColsAtCompileTime,
|
||||
MatrixVColsAtCompileTime = internal::traits<Derived>::MatrixVColsAtCompileTime,
|
||||
MatrixUMaxColsAtCompileTime = internal::traits<Derived>::MatrixUMaxColsAtCompileTime,
|
||||
MatrixVMaxColsAtCompileTime = internal::traits<Derived>::MatrixVMaxColsAtCompileTime
|
||||
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
|
||||
MatrixOptions = MatrixType::Options
|
||||
};
|
||||
|
||||
EIGEN_STATIC_ASSERT(!(ShouldComputeFullU != 0 && ShouldComputeThinU != 0), "SVDBase: Cannot request both full and thin U")
|
||||
EIGEN_STATIC_ASSERT(!(ShouldComputeFullV != 0 && ShouldComputeThinV != 0), "SVDBase: Cannot request both full and thin V")
|
||||
|
||||
typedef typename internal::make_proper_matrix_type<
|
||||
Scalar, RowsAtCompileTime, MatrixUColsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MatrixUMaxColsAtCompileTime
|
||||
>::type MatrixUType;
|
||||
typedef typename internal::make_proper_matrix_type<
|
||||
Scalar, ColsAtCompileTime, MatrixVColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MatrixVMaxColsAtCompileTime
|
||||
>::type MatrixVType;
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType;
|
||||
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
|
||||
|
||||
|
||||
Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
|
||||
@ -248,9 +207,9 @@ public:
|
||||
}
|
||||
|
||||
/** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
|
||||
EIGEN_CONSTEXPR inline bool computeU() const { return ShouldComputeFullU != 0 || ShouldComputeThinU != 0; }
|
||||
inline bool computeU() const { return m_computeFullU || m_computeThinU; }
|
||||
/** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
|
||||
EIGEN_CONSTEXPR inline bool computeV() const { return ShouldComputeFullV != 0 || ShouldComputeThinV != 0; }
|
||||
inline bool computeV() const { return m_computeFullV || m_computeThinV; }
|
||||
|
||||
inline Index rows() const { return m_rows; }
|
||||
inline Index cols() const { return m_cols; }
|
||||
@ -307,13 +266,16 @@ protected:
|
||||
}
|
||||
|
||||
// return true if already allocated
|
||||
bool allocate(Index rows, Index cols);
|
||||
bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
|
||||
|
||||
MatrixUType m_matrixU;
|
||||
MatrixVType m_matrixV;
|
||||
SingularValuesType m_singularValues;
|
||||
ComputationInfo m_info;
|
||||
bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
|
||||
bool m_computeFullU, m_computeThinU;
|
||||
bool m_computeFullV, m_computeThinV;
|
||||
unsigned int m_computationOptions;
|
||||
Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
|
||||
RealScalar m_prescribedThreshold;
|
||||
|
||||
@ -326,8 +288,15 @@ protected:
|
||||
m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computeFullU(false),
|
||||
m_computeThinU(false),
|
||||
m_computeFullV(false),
|
||||
m_computeThinV(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1), m_diagSize(0)
|
||||
{ }
|
||||
|
||||
|
||||
};
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
@ -361,14 +330,15 @@ void SVDBase<Derived>::_solve_impl_transposed(const RhsType &rhs, DstType &dst)
|
||||
}
|
||||
#endif
|
||||
|
||||
template<typename Derived>
|
||||
bool SVDBase<Derived>::allocate(Index rows, Index cols)
|
||||
template<typename MatrixType>
|
||||
bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
|
||||
{
|
||||
eigen_assert(rows >= 0 && cols >= 0);
|
||||
|
||||
if (m_isAllocated &&
|
||||
rows == m_rows &&
|
||||
cols == m_cols)
|
||||
cols == m_cols &&
|
||||
computationOptions == m_computationOptions)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
@ -378,13 +348,22 @@ bool SVDBase<Derived>::allocate(Index rows, Index cols)
|
||||
m_info = Success;
|
||||
m_isInitialized = false;
|
||||
m_isAllocated = true;
|
||||
m_computationOptions = computationOptions;
|
||||
m_computeFullU = (computationOptions & ComputeFullU) != 0;
|
||||
m_computeThinU = (computationOptions & ComputeThinU) != 0;
|
||||
m_computeFullV = (computationOptions & ComputeFullV) != 0;
|
||||
m_computeThinV = (computationOptions & ComputeThinV) != 0;
|
||||
eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
|
||||
eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
|
||||
eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
|
||||
"SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
|
||||
|
||||
m_diagSize = (std::min)(m_rows, m_cols);
|
||||
m_singularValues.resize(m_diagSize);
|
||||
if(RowsAtCompileTime==Dynamic)
|
||||
m_matrixU.resize(m_rows, ShouldComputeFullU ? m_rows : ShouldComputeThinU ? m_diagSize : 0);
|
||||
m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0);
|
||||
if(ColsAtCompileTime==Dynamic)
|
||||
m_matrixV.resize(m_cols, ShouldComputeFullV ? m_cols : ShouldComputeThinV ? m_diagSize : 0);
|
||||
m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
@ -38,6 +38,8 @@ void bench(int id, int rows, int size = Size)
|
||||
A = A*A.adjoint();
|
||||
BenchTimer t_llt, t_ldlt, t_lu, t_fplu, t_qr, t_cpqr, t_cod, t_fpqr, t_jsvd, t_bdcsvd;
|
||||
|
||||
int svd_opt = ComputeThinU|ComputeThinV;
|
||||
|
||||
int tries = 5;
|
||||
int rep = 1000/size;
|
||||
if(rep==0) rep = 1;
|
||||
@ -51,8 +53,8 @@ void bench(int id, int rows, int size = Size)
|
||||
ColPivHouseholderQR<Mat> cpqr(A.rows(),A.cols());
|
||||
CompleteOrthogonalDecomposition<Mat> cod(A.rows(),A.cols());
|
||||
FullPivHouseholderQR<Mat> fpqr(A.rows(),A.cols());
|
||||
JacobiSVD<MatDyn, ComputeThinU|ComputeThinV> jsvd(A.rows(),A.cols());
|
||||
BDCSVD<MatDyn, ComputeThinU|ComputeThinV> bdcsvd(A.rows(),A.cols());
|
||||
JacobiSVD<MatDyn> jsvd(A.rows(),A.cols());
|
||||
BDCSVD<MatDyn> bdcsvd(A.rows(),A.cols());
|
||||
|
||||
BENCH(t_llt, tries, rep, compute_norm_equation(llt,A));
|
||||
BENCH(t_ldlt, tries, rep, compute_norm_equation(ldlt,A));
|
||||
@ -65,9 +67,9 @@ void bench(int id, int rows, int size = Size)
|
||||
if(size*rows<=10000000)
|
||||
BENCH(t_fpqr, tries, rep, compute(fpqr,A));
|
||||
if(size<500) // JacobiSVD is really too slow for too large matrices
|
||||
BENCH(t_jsvd, tries, rep, jsvd.compute(A));
|
||||
BENCH(t_jsvd, tries, rep, jsvd.compute(A,svd_opt));
|
||||
// if(size*rows<=20000000)
|
||||
BENCH(t_bdcsvd, tries, rep, bdcsvd.compute(A));
|
||||
BENCH(t_bdcsvd, tries, rep, bdcsvd.compute(A,svd_opt));
|
||||
|
||||
results["LLT"][id] = t_llt.best();
|
||||
results["LDLT"][id] = t_ldlt.best();
|
||||
|
@ -101,8 +101,8 @@ m1.colPivHouseholderQr();
|
||||
?geqp3
|
||||
\endcode</td></tr>
|
||||
<tr class="alt"><td>Singular value decomposition \n \c EIGEN_USE_LAPACKE </td><td>\code
|
||||
JacobiSVD<MatrixXd, ComputeThinV> svd;
|
||||
svd.compute(m1);
|
||||
JacobiSVD<MatrixXd> svd;
|
||||
svd.compute(m1, ComputeThinV);
|
||||
\endcode</td><td>\code
|
||||
?gesvd
|
||||
\endcode</td></tr>
|
||||
|
@ -11,5 +11,5 @@ int main()
|
||||
VectorXf b = VectorXf::Random(3);
|
||||
cout << "Here is the right hand side b:\n" << b << endl;
|
||||
cout << "The least-squares solution is:\n"
|
||||
<< A.template bdcSvd<ComputeThinU | ComputeThinV>().solve(b) << endl;
|
||||
<< A.bdcSvd(ComputeThinU | ComputeThinV).solve(b) << endl;
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
MatrixXf m = MatrixXf::Random(3,2);
|
||||
cout << "Here is the matrix m:" << endl << m << endl;
|
||||
JacobiSVD<MatrixXf, ComputeThinU | ComputeThinV> svd(m);
|
||||
JacobiSVD<MatrixXf> svd(m, ComputeThinU | ComputeThinV);
|
||||
cout << "Its singular values are:" << endl << svd.singularValues() << endl;
|
||||
cout << "Its left singular vectors are the columns of the thin U matrix:" << endl << svd.matrixU() << endl;
|
||||
cout << "Its right singular vectors are the columns of the thin V matrix:" << endl << svd.matrixV() << endl;
|
||||
|
104
lapack/svd.cpp
104
lapack/svd.cpp
@ -10,7 +10,6 @@
|
||||
#include "lapack_common.h"
|
||||
#include <Eigen/SVD>
|
||||
|
||||
|
||||
// computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer
|
||||
EIGEN_LAPACK_FUNC(gesdd,(char *jobz, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork,
|
||||
EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int * /*iwork*/, int *info))
|
||||
@ -48,97 +47,40 @@ EIGEN_LAPACK_FUNC(gesdd,(char *jobz, int *m, int* n, Scalar* a, int *lda, RealSc
|
||||
|
||||
PlainMatrixType mat(*m,*n);
|
||||
mat = matrix(a,*m,*n,*lda);
|
||||
|
||||
int option = *jobz=='A' ? ComputeFullU|ComputeFullV
|
||||
: *jobz=='S' ? ComputeThinU|ComputeThinV
|
||||
: *jobz=='O' ? ComputeThinU|ComputeThinV
|
||||
: 0;
|
||||
|
||||
BDCSVD<PlainMatrixType> svd(mat,option);
|
||||
|
||||
make_vector(s,diag_size) = svd.singularValues().head(diag_size);
|
||||
|
||||
if(*jobz=='A')
|
||||
{
|
||||
BDCSVD<PlainMatrixType, ComputeFullU|ComputeFullV> svd(mat);
|
||||
make_vector(s,diag_size) = svd.singularValues().head(diag_size);
|
||||
matrix(u,*m,*m,*ldu) = svd.matrixU();
|
||||
matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
matrix(u,*m,*m,*ldu) = svd.matrixU();
|
||||
matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
}
|
||||
else if(*jobz=='S')
|
||||
{
|
||||
BDCSVD<PlainMatrixType, ComputeThinU|ComputeThinV> svd(mat);
|
||||
make_vector(s,diag_size) = svd.singularValues().head(diag_size);
|
||||
matrix(u,*m,diag_size,*ldu) = svd.matrixU();
|
||||
matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
}
|
||||
else if(*jobz=='O' && *m>=*n)
|
||||
{
|
||||
BDCSVD<PlainMatrixType, ComputeThinU|ComputeThinV> svd(mat);
|
||||
make_vector(s,diag_size) = svd.singularValues().head(diag_size);
|
||||
matrix(a,*m,*n,*lda) = svd.matrixU();
|
||||
matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
matrix(a,*m,*n,*lda) = svd.matrixU();
|
||||
matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
}
|
||||
else if(*jobz=='O')
|
||||
{
|
||||
BDCSVD<PlainMatrixType, ComputeThinU|ComputeThinV> svd(mat);
|
||||
make_vector(s,diag_size) = svd.singularValues().head(diag_size);
|
||||
matrix(u,*m,*m,*ldu) = svd.matrixU();
|
||||
matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint();
|
||||
}
|
||||
else
|
||||
{
|
||||
BDCSVD<PlainMatrixType> svd(mat);
|
||||
make_vector(s,diag_size) = svd.singularValues().head(diag_size);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
void gesvdAssignmentHelper(MatrixType& mat, char* jobu, char* jobv, int* m, int* n, int diag_size, Scalar* a, int* lda, RealScalar* s, Scalar* u, int* ldu, Scalar* vt, int* ldvt)
|
||||
{
|
||||
JacobiSVD<MatrixType, Options> svd(mat);
|
||||
make_vector(s,diag_size) = svd.singularValues().head(diag_size);
|
||||
{
|
||||
if(*jobu=='A') matrix(u,*m,*m,*ldu) = svd.matrixU();
|
||||
else if(*jobu=='S') matrix(u,*m,diag_size,*ldu) = svd.matrixU();
|
||||
else if(*jobu=='O') matrix(a,*m,diag_size,*lda) = svd.matrixU();
|
||||
}
|
||||
{
|
||||
if(*jobv=='A') matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
else if(*jobv=='S') matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
else if(*jobv=='O') matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint();
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType, int Options, typename ...Args>
|
||||
void gesvdSetVOptions(MatrixType& mat, char* jobu, char* jobv, Args... args)
|
||||
{
|
||||
if (*jobv=='A')
|
||||
{
|
||||
gesvdAssignmentHelper<MatrixType, Options | ComputeFullV>(mat, jobu, jobv, args...);
|
||||
}
|
||||
else if (*jobv=='S' || *jobv=='O')
|
||||
{
|
||||
gesvdAssignmentHelper<MatrixType, Options | ComputeThinV>(mat, jobu, jobv, args...);
|
||||
}
|
||||
else
|
||||
{
|
||||
gesvdAssignmentHelper<MatrixType, Options>(mat, jobu, jobv, args...);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename MatrixType, typename ...Args>
|
||||
void gesvdSetUOptions(MatrixType& mat, char* jobu, char* jobv, Args... args)
|
||||
{
|
||||
if (*jobu=='A')
|
||||
{
|
||||
gesvdSetVOptions<MatrixType, ComputeFullU>(mat, jobu, jobv, args...);
|
||||
}
|
||||
else if (*jobu=='S' || *jobu=='O')
|
||||
{
|
||||
gesvdSetVOptions<MatrixType, ComputeThinU>(mat, jobu, jobv, args...);
|
||||
}
|
||||
else
|
||||
{
|
||||
gesvdSetVOptions<MatrixType, 0>(mat, jobu, jobv, args...);
|
||||
}
|
||||
}
|
||||
|
||||
// computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm
|
||||
EIGEN_LAPACK_FUNC(gesvd,(char *jobu, char *jobv, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork,
|
||||
EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int *info))
|
||||
@ -175,8 +117,22 @@ EIGEN_LAPACK_FUNC(gesvd,(char *jobu, char *jobv, int *m, int* n, Scalar* a, int
|
||||
|
||||
PlainMatrixType mat(*m,*n);
|
||||
mat = matrix(a,*m,*n,*lda);
|
||||
|
||||
gesvdSetUOptions<PlainMatrixType>(mat, jobu, jobv, m, n, diag_size, a, lda, s, u, ldu, vt, ldvt);
|
||||
|
||||
int option = (*jobu=='A' ? ComputeFullU : *jobu=='S' || *jobu=='O' ? ComputeThinU : 0)
|
||||
| (*jobv=='A' ? ComputeFullV : *jobv=='S' || *jobv=='O' ? ComputeThinV : 0);
|
||||
|
||||
JacobiSVD<PlainMatrixType> svd(mat,option);
|
||||
|
||||
make_vector(s,diag_size) = svd.singularValues().head(diag_size);
|
||||
{
|
||||
if(*jobu=='A') matrix(u,*m,*m,*ldu) = svd.matrixU();
|
||||
else if(*jobu=='S') matrix(u,*m,diag_size,*ldu) = svd.matrixU();
|
||||
else if(*jobu=='O') matrix(a,*m,diag_size,*lda) = svd.matrixU();
|
||||
}
|
||||
{
|
||||
if(*jobv=='A') matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
else if(*jobv=='S') matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
else if(*jobv=='O') matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint();
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
@ -19,11 +19,26 @@
|
||||
#include <iostream>
|
||||
#include <Eigen/LU>
|
||||
|
||||
|
||||
#define SVD_DEFAULT(M) BDCSVD<M>
|
||||
#define SVD_FOR_MIN_NORM(M) BDCSVD<M>
|
||||
#define SVD_STATIC_OPTIONS(M, O) BDCSVD<M, O>
|
||||
#include "svd_common.h"
|
||||
|
||||
// Check all variants of JacobiSVD
|
||||
template<typename MatrixType>
|
||||
void bdcsvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
|
||||
{
|
||||
MatrixType m;
|
||||
if(pickrandom) {
|
||||
m.resizeLike(a);
|
||||
svd_fill_random(m);
|
||||
}
|
||||
else
|
||||
m = a;
|
||||
|
||||
CALL_SUBTEST(( svd_test_all_computation_options<BDCSVD<MatrixType> >(m, false) ));
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void bdcsvd_method()
|
||||
{
|
||||
@ -34,23 +49,28 @@ void bdcsvd_method()
|
||||
VERIFY_IS_APPROX(m.bdcSvd().singularValues(), RealVecType::Ones());
|
||||
VERIFY_RAISES_ASSERT(m.bdcSvd().matrixU());
|
||||
VERIFY_RAISES_ASSERT(m.bdcSvd().matrixV());
|
||||
VERIFY_IS_APPROX(m.template bdcSvd<ComputeFullU|ComputeFullV>().solve(m), m);
|
||||
VERIFY_IS_APPROX(m.template bdcSvd<ComputeFullU|ComputeFullV>().transpose().solve(m), m);
|
||||
VERIFY_IS_APPROX(m.template bdcSvd<ComputeFullU|ComputeFullV>().adjoint().solve(m), m);
|
||||
VERIFY_IS_APPROX(m.bdcSvd(ComputeFullU|ComputeFullV).solve(m), m);
|
||||
VERIFY_IS_APPROX(m.bdcSvd(ComputeFullU|ComputeFullV).transpose().solve(m), m);
|
||||
VERIFY_IS_APPROX(m.bdcSvd(ComputeFullU|ComputeFullV).adjoint().solve(m), m);
|
||||
}
|
||||
|
||||
// compare the Singular values returned with Jacobi and Bdc
|
||||
// Compare the Singular values returned with Jacobi and Bdc.
|
||||
template<typename MatrixType>
|
||||
void compare_bdc_jacobi(const MatrixType& a = MatrixType(), int algoswap = 16, bool random = true)
|
||||
void compare_bdc_jacobi(const MatrixType& a = MatrixType(), unsigned int computationOptions = 0, int algoswap = 16, bool random = true)
|
||||
{
|
||||
MatrixType m = random ? MatrixType::Random(a.rows(), a.cols()) : a;
|
||||
|
||||
BDCSVD<MatrixType> bdc_svd(m.rows(), m.cols());
|
||||
BDCSVD<MatrixType> bdc_svd(m.rows(), m.cols(), computationOptions);
|
||||
bdc_svd.setSwitchSize(algoswap);
|
||||
bdc_svd.compute(m);
|
||||
|
||||
|
||||
JacobiSVD<MatrixType> jacobi_svd(m);
|
||||
VERIFY_IS_APPROX(bdc_svd.singularValues(), jacobi_svd.singularValues());
|
||||
|
||||
if(computationOptions & ComputeFullU) VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
|
||||
if(computationOptions & ComputeThinU) VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
|
||||
if(computationOptions & ComputeFullV) VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
|
||||
if(computationOptions & ComputeThinV) VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
|
||||
}
|
||||
|
||||
// Verifies total deflation is **not** triggered.
|
||||
@ -71,59 +91,41 @@ void compare_bdc_jacobi_instance(bool structure_as_m, int algoswap = 16)
|
||||
-20.794, 8.68496, -4.83103,
|
||||
-8.4981, -10.5451, 23.9072;
|
||||
}
|
||||
compare_bdc_jacobi(m, algoswap, false);
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void bdcsvd_all_options(const MatrixType& input = MatrixType())
|
||||
{
|
||||
MatrixType m = input;
|
||||
svd_fill_random(m);
|
||||
svd_option_checks<MatrixType, 0>(m);
|
||||
compare_bdc_jacobi(m, 0, algoswap, false);
|
||||
}
|
||||
|
||||
EIGEN_DECLARE_TEST(bdcsvd)
|
||||
{
|
||||
CALL_SUBTEST_3(( svd_verify_assert<Matrix3f>() ));
|
||||
CALL_SUBTEST_4(( svd_verify_assert<Matrix4d>() ));
|
||||
CALL_SUBTEST_7(( svd_verify_assert<Matrix<float, 30, 21> >() ));
|
||||
CALL_SUBTEST_7(( svd_verify_assert<Matrix<float, 21, 30> >() ));
|
||||
CALL_SUBTEST_9(( svd_verify_assert<Matrix<std::complex<double>, 20, 27> >() ));
|
||||
CALL_SUBTEST_3(( svd_verify_assert<BDCSVD<Matrix3f> >(Matrix3f()) ));
|
||||
CALL_SUBTEST_4(( svd_verify_assert<BDCSVD<Matrix4d> >(Matrix4d()) ));
|
||||
CALL_SUBTEST_7(( svd_verify_assert<BDCSVD<MatrixXf> >(MatrixXf(10,12)) ));
|
||||
CALL_SUBTEST_8(( svd_verify_assert<BDCSVD<MatrixXcd> >(MatrixXcd(7,5)) ));
|
||||
|
||||
CALL_SUBTEST_101(( svd_all_trivial_2x2(bdcsvd_all_options<Matrix2cd>) ));
|
||||
CALL_SUBTEST_102(( svd_all_trivial_2x2(bdcsvd_all_options<Matrix2d>) ));
|
||||
CALL_SUBTEST_101(( svd_all_trivial_2x2(bdcsvd<Matrix2cd>) ));
|
||||
CALL_SUBTEST_102(( svd_all_trivial_2x2(bdcsvd<Matrix2d>) ));
|
||||
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_3(( bdcsvd<Matrix3f>() ));
|
||||
CALL_SUBTEST_4(( bdcsvd<Matrix4d>() ));
|
||||
CALL_SUBTEST_5(( bdcsvd<Matrix<float,3,5> >() ));
|
||||
|
||||
int r = internal::random<int>(1, EIGEN_TEST_MAX_SIZE/2),
|
||||
c = internal::random<int>(1, EIGEN_TEST_MAX_SIZE/2);
|
||||
|
||||
TEST_SET_BUT_UNUSED_VARIABLE(r)
|
||||
TEST_SET_BUT_UNUSED_VARIABLE(c)
|
||||
|
||||
CALL_SUBTEST_7(( compare_bdc_jacobi<MatrixXf>(MatrixXf(r,c)) ));
|
||||
CALL_SUBTEST_10(( compare_bdc_jacobi<MatrixXd>(MatrixXd(r,c)) ));
|
||||
CALL_SUBTEST_8(( compare_bdc_jacobi<MatrixXcd>(MatrixXcd(r,c)) ));
|
||||
CALL_SUBTEST_6(( bdcsvd(Matrix<double,Dynamic,2>(r,2)) ));
|
||||
CALL_SUBTEST_7(( bdcsvd(MatrixXf(r,c)) ));
|
||||
CALL_SUBTEST_7(( compare_bdc_jacobi(MatrixXf(r,c)) ));
|
||||
CALL_SUBTEST_10(( bdcsvd(MatrixXd(r,c)) ));
|
||||
CALL_SUBTEST_10(( compare_bdc_jacobi(MatrixXd(r,c)) ));
|
||||
CALL_SUBTEST_8(( bdcsvd(MatrixXcd(r,c)) ));
|
||||
CALL_SUBTEST_8(( compare_bdc_jacobi(MatrixXcd(r,c)) ));
|
||||
|
||||
// Test on inf/nan matrix
|
||||
CALL_SUBTEST_7( (svd_inf_nan<MatrixXf>()) );
|
||||
CALL_SUBTEST_10( (svd_inf_nan<MatrixXd>()) );
|
||||
|
||||
// Verify some computations using all combinations of the Options template parameter.
|
||||
CALL_SUBTEST_3(( bdcsvd_all_options<Matrix3f>() ));
|
||||
CALL_SUBTEST_3(( bdcsvd_all_options<Matrix<float, 2, 3> >() ));
|
||||
CALL_SUBTEST_4(( bdcsvd_all_options<Matrix<double, 20, 17> >() ));
|
||||
CALL_SUBTEST_4(( bdcsvd_all_options<Matrix<double, 17, 20> >() ));
|
||||
CALL_SUBTEST_5(( bdcsvd_all_options<Matrix<double, Dynamic, 30> >(Matrix<double, Dynamic, 30>(r, 30)) ));
|
||||
CALL_SUBTEST_5(( bdcsvd_all_options<Matrix<double, 20, Dynamic> >(Matrix<double, 20, Dynamic>(20, c)) ));
|
||||
CALL_SUBTEST_7(( bdcsvd_all_options<MatrixXf>(MatrixXf(r, c)) ));
|
||||
CALL_SUBTEST_8(( bdcsvd_all_options<MatrixXcd>(MatrixXcd(r, c)) ));
|
||||
CALL_SUBTEST_10(( bdcsvd_all_options<MatrixXd>(MatrixXd(r, c)) ));
|
||||
CALL_SUBTEST_14(( bdcsvd_all_options<Matrix<double, 20, 27, RowMajor>>() ));
|
||||
CALL_SUBTEST_14(( bdcsvd_all_options<Matrix<double, 27, 20, RowMajor>>() ));
|
||||
|
||||
CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, ColMajor, 20, 35>, ColPivHouseholderQRPreconditioner>(r, c) ));
|
||||
CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, ColMajor, 35, 20>, HouseholderQRPreconditioner>(r, c) ));
|
||||
CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, RowMajor, 20, 35>, ColPivHouseholderQRPreconditioner>(r, c) ));
|
||||
CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, RowMajor, 35, 20>, HouseholderQRPreconditioner>(r, c) ));
|
||||
CALL_SUBTEST_7( (svd_inf_nan<BDCSVD<MatrixXf>, MatrixXf>()) );
|
||||
CALL_SUBTEST_10( (svd_inf_nan<BDCSVD<MatrixXd>, MatrixXd>()) );
|
||||
}
|
||||
|
||||
// test matrixbase method
|
||||
|
@ -200,8 +200,8 @@ EIGEN_DECLARE_TEST(boostmultiprec)
|
||||
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
||||
}
|
||||
|
||||
CALL_SUBTEST_9(( jacobisvd_all_options(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
|
||||
CALL_SUBTEST_10(( bdcsvd_all_options(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
|
||||
CALL_SUBTEST_9(( jacobisvd(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
|
||||
CALL_SUBTEST_10(( bdcsvd(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
|
||||
|
||||
CALL_SUBTEST_11(( test_simplicial_cholesky_T<Real,int,ColMajor>() ));
|
||||
}
|
||||
|
@ -211,7 +211,7 @@ MatrixType randomRotationMatrix()
|
||||
// https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-7/103/2016/isprs-annals-III-7-103-2016.pdf
|
||||
const MatrixType rand = MatrixType::Random();
|
||||
const MatrixType q = rand.householderQr().householderQ();
|
||||
const JacobiSVD<MatrixType, ComputeFullU | ComputeFullV> svd(q);
|
||||
const JacobiSVD<MatrixType> svd = q.jacobiSvd(ComputeFullU | ComputeFullV);
|
||||
const typename MatrixType::Scalar det = (svd.matrixU() * svd.matrixV().transpose()).determinant();
|
||||
MatrixType diag = rand.Identity();
|
||||
diag(MatrixType::RowsAtCompileTime - 1, MatrixType::ColsAtCompileTime - 1) = det;
|
||||
|
@ -16,9 +16,49 @@
|
||||
|
||||
#define SVD_DEFAULT(M) JacobiSVD<M>
|
||||
#define SVD_FOR_MIN_NORM(M) JacobiSVD<M,ColPivHouseholderQRPreconditioner>
|
||||
#define SVD_STATIC_OPTIONS(M, O) JacobiSVD<M, O>
|
||||
#include "svd_common.h"
|
||||
|
||||
// Check all variants of JacobiSVD
|
||||
template<typename MatrixType>
|
||||
void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
|
||||
{
|
||||
MatrixType m = a;
|
||||
if(pickrandom)
|
||||
svd_fill_random(m);
|
||||
|
||||
CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> >(m, true) )); // check full only
|
||||
CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner> >(m, false) ));
|
||||
CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, HouseholderQRPreconditioner> >(m, false) ));
|
||||
if(m.rows()==m.cols())
|
||||
CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, NoQRPreconditioner> >(m, false) ));
|
||||
}
|
||||
|
||||
template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m)
|
||||
{
|
||||
svd_verify_assert<JacobiSVD<MatrixType> >(m);
|
||||
svd_verify_assert<JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> >(m, true);
|
||||
svd_verify_assert<JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner> >(m);
|
||||
svd_verify_assert<JacobiSVD<MatrixType, HouseholderQRPreconditioner> >(m);
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
||||
enum {
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime
|
||||
};
|
||||
|
||||
|
||||
MatrixType a = MatrixType::Zero(rows, cols);
|
||||
a.setZero();
|
||||
|
||||
if (ColsAtCompileTime == Dynamic)
|
||||
{
|
||||
JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
|
||||
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV))
|
||||
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV))
|
||||
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV))
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void jacobisvd_method()
|
||||
{
|
||||
@ -29,47 +69,9 @@ void jacobisvd_method()
|
||||
VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones());
|
||||
VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU());
|
||||
VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV());
|
||||
VERIFY_IS_APPROX(m.template jacobiSvd<ComputeFullU|ComputeFullV>().solve(m), m);
|
||||
VERIFY_IS_APPROX(m.template jacobiSvd<ComputeFullU|ComputeFullV>().transpose().solve(m), m);
|
||||
VERIFY_IS_APPROX(m.template jacobiSvd<ComputeFullU|ComputeFullV>().adjoint().solve(m), m);
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void jacobisvd_all_options(const MatrixType& input = MatrixType())
|
||||
{
|
||||
MatrixType m = input;
|
||||
svd_fill_random(m);
|
||||
svd_option_checks<MatrixType, 0 /* Default */>(m);
|
||||
svd_option_checks<MatrixType, ColPivHouseholderQRPreconditioner>(m);
|
||||
svd_option_checks<MatrixType, HouseholderQRPreconditioner>(m);
|
||||
svd_option_checks_full_only<MatrixType, FullPivHouseholderQRPreconditioner>(m); // FullPiv only used when computing full unitaries
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void jacobisvd_verify_assert(const MatrixType& m = MatrixType())
|
||||
{
|
||||
svd_verify_assert<MatrixType, 0 /* Default */>(m);
|
||||
svd_verify_assert<MatrixType, ColPivHouseholderQRPreconditioner>(m);
|
||||
svd_verify_assert<MatrixType, HouseholderQRPreconditioner>(m);
|
||||
svd_verify_assert_full_only<MatrixType, FullPivHouseholderQRPreconditioner>(m);
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void jacobisvd_verify_inputs(const MatrixType& m = MatrixType()) {
|
||||
// check defaults
|
||||
typedef JacobiSVD<MatrixType> DefaultSVD;
|
||||
DefaultSVD defaultSvd(m);
|
||||
VERIFY((int)DefaultSVD::QRPreconditioner == (int)ColPivHouseholderQRPreconditioner);
|
||||
VERIFY(!defaultSvd.computeU());
|
||||
VERIFY(!defaultSvd.computeV());
|
||||
|
||||
// ColPivHouseholderQR is always default in presence of other options.
|
||||
VERIFY(( (int)JacobiSVD<MatrixType, ComputeThinU>::QRPreconditioner == (int)ColPivHouseholderQRPreconditioner ));
|
||||
VERIFY(( (int)JacobiSVD<MatrixType, ComputeThinV>::QRPreconditioner == (int)ColPivHouseholderQRPreconditioner ));
|
||||
VERIFY(( (int)JacobiSVD<MatrixType, ComputeThinU | ComputeThinV>::QRPreconditioner == (int)ColPivHouseholderQRPreconditioner ));
|
||||
VERIFY(( (int)JacobiSVD<MatrixType, ComputeFullU | ComputeFullV>::QRPreconditioner == (int)ColPivHouseholderQRPreconditioner ));
|
||||
VERIFY(( (int)JacobiSVD<MatrixType, ComputeThinU | ComputeFullV>::QRPreconditioner == (int)ColPivHouseholderQRPreconditioner ));
|
||||
VERIFY(( (int)JacobiSVD<MatrixType, ComputeFullU | ComputeThinV>::QRPreconditioner == (int)ColPivHouseholderQRPreconditioner ));
|
||||
VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m);
|
||||
VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).transpose().solve(m), m);
|
||||
VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).adjoint().solve(m), m);
|
||||
}
|
||||
|
||||
namespace Foo {
|
||||
@ -89,63 +91,45 @@ void msvc_workaround()
|
||||
|
||||
EIGEN_DECLARE_TEST(jacobisvd)
|
||||
{
|
||||
CALL_SUBTEST_4(( jacobisvd_verify_inputs<Matrix4d>() ));
|
||||
CALL_SUBTEST_7(( jacobisvd_verify_inputs(Matrix<float, 10, Dynamic>(10, 12)) ));
|
||||
CALL_SUBTEST_8(( jacobisvd_verify_inputs<Matrix<std::complex<double>, 7, 5> >() ));
|
||||
|
||||
CALL_SUBTEST_3(( jacobisvd_verify_assert<Matrix3f>() ));
|
||||
CALL_SUBTEST_4(( jacobisvd_verify_assert<Matrix4d>() ));
|
||||
CALL_SUBTEST_7(( jacobisvd_verify_assert<Matrix<float, 10, 12>>() ));
|
||||
CALL_SUBTEST_7(( jacobisvd_verify_assert<Matrix<float, 12, 10>>() ));
|
||||
CALL_SUBTEST_7(( jacobisvd_verify_assert<MatrixXf>(MatrixXf(10, 12)) ));
|
||||
CALL_SUBTEST_8(( jacobisvd_verify_assert<MatrixXcd>(MatrixXcd(7, 5)) ));
|
||||
CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) ));
|
||||
CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) ));
|
||||
CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) ));
|
||||
CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));
|
||||
|
||||
CALL_SUBTEST_11(svd_all_trivial_2x2(jacobisvd_all_options<Matrix2cd>));
|
||||
CALL_SUBTEST_12(svd_all_trivial_2x2(jacobisvd_all_options<Matrix2d>));
|
||||
CALL_SUBTEST_11(svd_all_trivial_2x2(jacobisvd<Matrix2cd>));
|
||||
CALL_SUBTEST_12(svd_all_trivial_2x2(jacobisvd<Matrix2d>));
|
||||
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_3(( jacobisvd<Matrix3f>() ));
|
||||
CALL_SUBTEST_4(( jacobisvd<Matrix4d>() ));
|
||||
CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
|
||||
CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
|
||||
|
||||
int r = internal::random<int>(1, 30),
|
||||
c = internal::random<int>(1, 30);
|
||||
|
||||
TEST_SET_BUT_UNUSED_VARIABLE(r)
|
||||
TEST_SET_BUT_UNUSED_VARIABLE(c)
|
||||
|
||||
// Verify some computations using all combinations of the Options template parameter.
|
||||
CALL_SUBTEST_3(( jacobisvd_all_options<Matrix3f>() ));
|
||||
CALL_SUBTEST_3(( jacobisvd_all_options<Matrix<float, 2, 3> >() ));
|
||||
CALL_SUBTEST_4(( jacobisvd_all_options<Matrix4d>() ));
|
||||
CALL_SUBTEST_4(( jacobisvd_all_options<Matrix<double, 10, 16> >() ));
|
||||
CALL_SUBTEST_4(( jacobisvd_all_options<Matrix<double, 16, 10> >() ));
|
||||
CALL_SUBTEST_5(( jacobisvd_all_options<Matrix<double, Dynamic, 16> >(Matrix<double, Dynamic, 16>(r, 16)) ));
|
||||
CALL_SUBTEST_5(( jacobisvd_all_options<Matrix<double, 10, Dynamic> >(Matrix<double, 10, Dynamic>(10, c)) ));
|
||||
CALL_SUBTEST_7(( jacobisvd_all_options<MatrixXf>( MatrixXf(r, c)) ));
|
||||
CALL_SUBTEST_8(( jacobisvd_all_options<MatrixXcd>( MatrixXcd(r, c)) ));
|
||||
CALL_SUBTEST_10(( jacobisvd_all_options<MatrixXd>( MatrixXd(r, c)) ));
|
||||
CALL_SUBTEST_14(( jacobisvd_all_options<Matrix<double, 5, 7, RowMajor>>() ));
|
||||
CALL_SUBTEST_14(( jacobisvd_all_options<Matrix<double, 7, 5, RowMajor>>() ));
|
||||
|
||||
MatrixXcd noQRTest = MatrixXcd(r, r);
|
||||
svd_fill_random(noQRTest);
|
||||
CALL_SUBTEST_16(( svd_option_checks<MatrixXcd, NoQRPreconditioner>(noQRTest) ));
|
||||
|
||||
CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, ColMajor, 13, 15>, ColPivHouseholderQRPreconditioner>(r, c) ));
|
||||
CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, ColMajor, 15, 13>, HouseholderQRPreconditioner>(r, c) ));
|
||||
CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, RowMajor, 13, 15>, ColPivHouseholderQRPreconditioner>(r, c) ));
|
||||
CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, RowMajor, 15, 13>, HouseholderQRPreconditioner>(r, c) ));
|
||||
CALL_SUBTEST_10(( jacobisvd<MatrixXd>(MatrixXd(r,c)) ));
|
||||
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
|
||||
CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
|
||||
(void) r;
|
||||
(void) c;
|
||||
|
||||
// Test on inf/nan matrix
|
||||
CALL_SUBTEST_7( (svd_inf_nan<MatrixXf>()) );
|
||||
CALL_SUBTEST_10( (svd_inf_nan<MatrixXd>()) );
|
||||
CALL_SUBTEST_7( (svd_inf_nan<JacobiSVD<MatrixXf>, MatrixXf>()) );
|
||||
CALL_SUBTEST_10( (svd_inf_nan<JacobiSVD<MatrixXd>, MatrixXd>()) );
|
||||
|
||||
CALL_SUBTEST_13(( jacobisvd_verify_assert<Matrix<double, 6, 1>>() ));
|
||||
CALL_SUBTEST_13(( jacobisvd_verify_assert<Matrix<double, 1, 6>>() ));
|
||||
CALL_SUBTEST_13(( jacobisvd_verify_assert<Matrix<double, Dynamic, 1>>(Matrix<double, Dynamic, 1>(r)) ));
|
||||
CALL_SUBTEST_13(( jacobisvd_verify_assert<Matrix<double, 1, Dynamic>>(Matrix<double, 1, Dynamic>(c)) ));
|
||||
// bug1395 test compile-time vectors as input
|
||||
CALL_SUBTEST_13(( jacobisvd_verify_assert(Matrix<double,6,1>()) ));
|
||||
CALL_SUBTEST_13(( jacobisvd_verify_assert(Matrix<double,1,6>()) ));
|
||||
CALL_SUBTEST_13(( jacobisvd_verify_assert(Matrix<double,Dynamic,1>(r)) ));
|
||||
CALL_SUBTEST_13(( jacobisvd_verify_assert(Matrix<double,1,Dynamic>(c)) ));
|
||||
}
|
||||
|
||||
CALL_SUBTEST_7(( jacobisvd_all_options<MatrixXd>(MatrixXd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
|
||||
CALL_SUBTEST_8(( jacobisvd_all_options<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
|
||||
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
|
||||
CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
|
||||
|
||||
// test matrixbase method
|
||||
CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() ));
|
||||
|
@ -152,7 +152,7 @@ void ctms_decompositions()
|
||||
x = fpQR.solve(b);
|
||||
|
||||
// SVD module
|
||||
Eigen::JacobiSVD<Matrix, ComputeFullU | ComputeFullV> jSVD; jSVD.compute(A);
|
||||
Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A, ComputeFullU | ComputeFullV);
|
||||
}
|
||||
|
||||
void test_zerosized() {
|
||||
|
@ -55,7 +55,7 @@ void cod() {
|
||||
MatrixType exact_solution = MatrixType::Random(cols, cols2);
|
||||
MatrixType rhs = matrix * exact_solution;
|
||||
MatrixType cod_solution = cod.solve(rhs);
|
||||
JacobiSVD<MatrixType, ComputeThinU | ComputeThinV> svd(matrix);
|
||||
JacobiSVD<MatrixType> svd(matrix, ComputeThinU | ComputeThinV);
|
||||
MatrixType svd_solution = svd.solve(rhs);
|
||||
VERIFY_IS_APPROX(cod_solution, svd_solution);
|
||||
|
||||
@ -88,7 +88,7 @@ void cod_fixedsize() {
|
||||
exact_solution.setRandom(Cols, Cols2);
|
||||
Matrix<Scalar, Rows, Cols2> rhs = matrix * exact_solution;
|
||||
Matrix<Scalar, Cols, Cols2> cod_solution = cod.solve(rhs);
|
||||
JacobiSVD<MatrixType, ComputeFullU | ComputeFullV> svd(matrix);
|
||||
JacobiSVD<MatrixType> svd(matrix, ComputeFullU | ComputeFullV);
|
||||
Matrix<Scalar, Cols, Cols2> svd_solution = svd.solve(rhs);
|
||||
VERIFY_IS_APPROX(cod_solution, svd_solution);
|
||||
|
||||
|
@ -16,10 +16,6 @@
|
||||
#error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
|
||||
#endif
|
||||
|
||||
#ifndef SVD_STATIC_OPTIONS
|
||||
#error a macro SVD_STATIC_OPTIONS(MatrixType, Options) must be defined prior to including svd_common.h
|
||||
#endif
|
||||
|
||||
#include "svd_fill.h"
|
||||
#include "solverbase.h"
|
||||
|
||||
@ -59,8 +55,9 @@ void svd_check_full(const MatrixType& m, const SvdType& svd)
|
||||
}
|
||||
|
||||
// Compare partial SVD defined by computationOptions to a full SVD referenceSvd
|
||||
template<typename MatrixType, typename SvdType, int Options>
|
||||
template<typename SvdType, typename MatrixType>
|
||||
void svd_compare_to_full(const MatrixType& m,
|
||||
unsigned int computationOptions,
|
||||
const SvdType& referenceSvd)
|
||||
{
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
@ -69,18 +66,18 @@ void svd_compare_to_full(const MatrixType& m,
|
||||
Index diagSize = (std::min)(rows, cols);
|
||||
RealScalar prec = test_precision<RealScalar>();
|
||||
|
||||
SVD_STATIC_OPTIONS(MatrixType, Options) svd(m);
|
||||
SvdType svd(m, computationOptions);
|
||||
|
||||
VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
|
||||
|
||||
if(Options & (ComputeFullV|ComputeThinV))
|
||||
if(computationOptions & (ComputeFullV|ComputeThinV))
|
||||
{
|
||||
VERIFY( (svd.matrixV().adjoint()*svd.matrixV()).isIdentity(prec) );
|
||||
VERIFY_IS_APPROX( svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint(),
|
||||
referenceSvd.matrixV().leftCols(diagSize) * referenceSvd.singularValues().asDiagonal() * referenceSvd.matrixV().leftCols(diagSize).adjoint());
|
||||
}
|
||||
|
||||
if(Options & (ComputeFullU|ComputeThinU))
|
||||
if(computationOptions & (ComputeFullU|ComputeThinU))
|
||||
{
|
||||
VERIFY( (svd.matrixU().adjoint()*svd.matrixU()).isIdentity(prec) );
|
||||
VERIFY_IS_APPROX( svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal() * svd.matrixU().leftCols(diagSize).adjoint(),
|
||||
@ -88,18 +85,19 @@ void svd_compare_to_full(const MatrixType& m,
|
||||
}
|
||||
|
||||
// The following checks are not critical.
|
||||
// For instance, with Dived&Conquer SVD, if only the factor 'V' is computed then different matrix-matrix product implementation will be used
|
||||
// For instance, with Dived&Conquer SVD, if only the factor 'V' is computedt then different matrix-matrix product implementation will be used
|
||||
// and the resulting 'V' factor might be significantly different when the SVD decomposition is not unique, especially with single precision float.
|
||||
++g_test_level;
|
||||
if(Options & ComputeFullU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
|
||||
if(Options & ComputeThinU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
|
||||
if(Options & ComputeFullV) VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs());
|
||||
if(Options & ComputeThinV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
|
||||
if(computationOptions & ComputeFullU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
|
||||
if(computationOptions & ComputeThinU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
|
||||
if(computationOptions & ComputeFullV) VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs());
|
||||
if(computationOptions & ComputeThinV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
|
||||
--g_test_level;
|
||||
}
|
||||
|
||||
//
|
||||
template<typename SvdType, typename MatrixType>
|
||||
void svd_least_square(const MatrixType& m)
|
||||
void svd_least_square(const MatrixType& m, unsigned int computationOptions)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
@ -115,7 +113,7 @@ void svd_least_square(const MatrixType& m)
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
|
||||
|
||||
RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
|
||||
SvdType svd(m);
|
||||
SvdType svd(m, computationOptions);
|
||||
|
||||
if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
|
||||
else if(internal::is_same<RealScalar,float>::value) svd.setThreshold(2e-4);
|
||||
@ -164,9 +162,9 @@ void svd_least_square(const MatrixType& m)
|
||||
}
|
||||
}
|
||||
|
||||
// check minimal norm solutions, the input matrix m is only used to recover problem size
|
||||
template<typename MatrixType, int Options>
|
||||
void svd_min_norm(const MatrixType& m)
|
||||
// check minimal norm solutions, the inoput matrix m is only used to recover problem size
|
||||
template<typename MatrixType>
|
||||
void svd_min_norm(const MatrixType& m, unsigned int computationOptions)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
Index cols = m.cols();
|
||||
@ -201,7 +199,7 @@ void svd_min_norm(const MatrixType& m)
|
||||
tmp.tail(cols-rank).setZero();
|
||||
SolutionType x21 = qr.householderQ() * tmp;
|
||||
// now check with SVD
|
||||
SVD_STATIC_OPTIONS(MatrixType2, Options) svd2(m2);
|
||||
SVD_FOR_MIN_NORM(MatrixType2) svd2(m2, computationOptions);
|
||||
SolutionType x22 = svd2.solve(rhs2);
|
||||
VERIFY_IS_APPROX(m2*x21, rhs2);
|
||||
VERIFY_IS_APPROX(m2*x22, rhs2);
|
||||
@ -214,7 +212,7 @@ void svd_min_norm(const MatrixType& m)
|
||||
Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
|
||||
MatrixType3 m3 = C * m2;
|
||||
RhsType3 rhs3 = C * rhs2;
|
||||
SVD_STATIC_OPTIONS(MatrixType3, Options) svd3(m3);
|
||||
SVD_FOR_MIN_NORM(MatrixType3) svd3(m3, computationOptions);
|
||||
SolutionType x3 = svd3.solve(rhs3);
|
||||
VERIFY_IS_APPROX(m3*x3, rhs3);
|
||||
VERIFY_IS_APPROX(m3*x21, rhs3);
|
||||
@ -241,6 +239,57 @@ void svd_test_solvers(const MatrixType& m, const SolverType& solver) {
|
||||
check_solverbase<CMatrixType, MatrixType>(m, solver, rows, cols, cols2);
|
||||
}
|
||||
|
||||
// Check full, compare_to_full, least_square, and min_norm for all possible compute-options
|
||||
template<typename SvdType, typename MatrixType>
|
||||
void svd_test_all_computation_options(const MatrixType& m, bool full_only)
|
||||
{
|
||||
// if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
|
||||
// return;
|
||||
STATIC_CHECK(( internal::is_same<typename SvdType::StorageIndex,int>::value ));
|
||||
|
||||
SvdType fullSvd(m, ComputeFullU|ComputeFullV);
|
||||
CALL_SUBTEST(( svd_check_full(m, fullSvd) ));
|
||||
CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeFullV) ));
|
||||
CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeFullV) ));
|
||||
|
||||
#if defined __INTEL_COMPILER
|
||||
// remark #111: statement is unreachable
|
||||
#pragma warning disable 111
|
||||
#endif
|
||||
|
||||
svd_test_solvers(m, fullSvd);
|
||||
|
||||
if(full_only)
|
||||
return;
|
||||
|
||||
CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU, fullSvd) ));
|
||||
CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullV, fullSvd) ));
|
||||
CALL_SUBTEST(( svd_compare_to_full(m, 0, fullSvd) ));
|
||||
|
||||
if (MatrixType::ColsAtCompileTime == Dynamic) {
|
||||
// thin U/V are only available with dynamic number of columns
|
||||
CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
|
||||
CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinV, fullSvd) ));
|
||||
CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
|
||||
CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU , fullSvd) ));
|
||||
CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
|
||||
|
||||
CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeThinV) ));
|
||||
CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeFullV) ));
|
||||
CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeThinV) ));
|
||||
|
||||
CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeThinV) ));
|
||||
CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeFullV) ));
|
||||
CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeThinV) ));
|
||||
|
||||
// test reconstruction
|
||||
Index diagSize = (std::min)(m.rows(), m.cols());
|
||||
SvdType svd(m, ComputeThinU | ComputeThinV);
|
||||
VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// work around stupid msvc error when constructing at compile time an expression that involves
|
||||
// a division by zero, even if the numeric type has floating point
|
||||
template<typename Scalar>
|
||||
@ -249,32 +298,31 @@ EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
|
||||
// workaround aggressive optimization in ICC
|
||||
template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
|
||||
|
||||
|
||||
// This function verifies we don't iterate infinitely on nan/inf values,
|
||||
// and that info() returns InvalidInput.
|
||||
template<typename MatrixType>
|
||||
template<typename SvdType, typename MatrixType>
|
||||
void svd_inf_nan()
|
||||
{
|
||||
SVD_STATIC_OPTIONS(MatrixType, ComputeFullU | ComputeFullV) svd;
|
||||
SvdType svd;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
Scalar some_inf = Scalar(1) / zero<Scalar>();
|
||||
VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
|
||||
svd.compute(MatrixType::Constant(10,10,some_inf));
|
||||
svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
|
||||
VERIFY(svd.info() == InvalidInput);
|
||||
|
||||
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
|
||||
VERIFY(nan != nan);
|
||||
svd.compute(MatrixType::Constant(10,10,nan));
|
||||
svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV);
|
||||
VERIFY(svd.info() == InvalidInput);
|
||||
|
||||
MatrixType m = MatrixType::Zero(10,10);
|
||||
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
|
||||
svd.compute(m);
|
||||
svd.compute(m, ComputeFullU | ComputeFullV);
|
||||
VERIFY(svd.info() == InvalidInput);
|
||||
|
||||
m = MatrixType::Zero(10,10);
|
||||
m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
|
||||
svd.compute(m);
|
||||
svd.compute(m, ComputeFullU | ComputeFullV);
|
||||
VERIFY(svd.info() == InvalidInput);
|
||||
|
||||
// regression test for bug 791
|
||||
@ -282,7 +330,7 @@ void svd_inf_nan()
|
||||
m << 0, 2*NumTraits<Scalar>::epsilon(), 0.5,
|
||||
0, -0.5, 0,
|
||||
nan, 0, 0;
|
||||
svd.compute(m);
|
||||
svd.compute(m, ComputeFullU | ComputeFullV);
|
||||
VERIFY(svd.info() == InvalidInput);
|
||||
|
||||
m.resize(4,4);
|
||||
@ -290,7 +338,7 @@ void svd_inf_nan()
|
||||
0, 3, 1, 2e-308,
|
||||
1, 0, 1, nan,
|
||||
0, nan, nan, 0;
|
||||
svd.compute(m);
|
||||
svd.compute(m, ComputeFullU | ComputeFullV);
|
||||
VERIFY(svd.info() == InvalidInput);
|
||||
}
|
||||
|
||||
@ -307,8 +355,8 @@ void svd_underoverflow()
|
||||
Matrix2d M;
|
||||
M << -7.90884e-313, -4.94e-324,
|
||||
0, 5.60844e-313;
|
||||
SVD_STATIC_OPTIONS(Matrix2d, ComputeFullU | ComputeFullV) svd;
|
||||
svd.compute(M);
|
||||
SVD_DEFAULT(Matrix2d) svd;
|
||||
svd.compute(M,ComputeFullU|ComputeFullV);
|
||||
CALL_SUBTEST( svd_check_full(M,svd) );
|
||||
|
||||
// Check all 2x2 matrices made with the following coefficients:
|
||||
@ -319,7 +367,7 @@ void svd_underoverflow()
|
||||
do
|
||||
{
|
||||
M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
|
||||
svd.compute(M);
|
||||
svd.compute(M,ComputeFullU|ComputeFullV);
|
||||
CALL_SUBTEST( svd_check_full(M,svd) );
|
||||
|
||||
id(k)++;
|
||||
@ -342,13 +390,15 @@ void svd_underoverflow()
|
||||
3.7841695601406358e+307, 2.4331702789740617e+306, -3.5235707140272905e+307,
|
||||
-8.7190887618028355e+307, -7.3453213709232193e+307, -2.4367363684472105e+307;
|
||||
|
||||
SVD_STATIC_OPTIONS(Matrix3d, ComputeFullU|ComputeFullV) svd3;
|
||||
svd3.compute(M3); // just check we don't loop indefinitely
|
||||
SVD_DEFAULT(Matrix3d) svd3;
|
||||
svd3.compute(M3,ComputeFullU|ComputeFullV); // just check we don't loop indefinitely
|
||||
CALL_SUBTEST( svd_check_full(M3,svd3) );
|
||||
}
|
||||
|
||||
// void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
|
||||
|
||||
template<typename MatrixType>
|
||||
void svd_all_trivial_2x2( void (*cb)(const MatrixType&) )
|
||||
void svd_all_trivial_2x2( void (*cb)(const MatrixType&,bool) )
|
||||
{
|
||||
MatrixType M;
|
||||
VectorXd value_set(3);
|
||||
@ -359,7 +409,7 @@ void svd_all_trivial_2x2( void (*cb)(const MatrixType&) )
|
||||
{
|
||||
M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
|
||||
|
||||
cb(M);
|
||||
cb(M,false);
|
||||
|
||||
id(k)++;
|
||||
if(id(k)>=value_set.size())
|
||||
@ -384,10 +434,22 @@ void svd_preallocate()
|
||||
internal::set_is_malloc_allowed(true);
|
||||
svd.compute(m);
|
||||
VERIFY_IS_APPROX(svd.singularValues(), v);
|
||||
VERIFY_RAISES_ASSERT(svd.matrixU());
|
||||
VERIFY_RAISES_ASSERT(svd.matrixV());
|
||||
|
||||
SVD_STATIC_OPTIONS(MatrixXf, ComputeFullU | ComputeFullV) svd2(3,3);
|
||||
SVD_DEFAULT(MatrixXf) svd2(3,3);
|
||||
internal::set_is_malloc_allowed(false);
|
||||
svd2.compute(m);
|
||||
internal::set_is_malloc_allowed(true);
|
||||
VERIFY_IS_APPROX(svd2.singularValues(), v);
|
||||
VERIFY_RAISES_ASSERT(svd2.matrixU());
|
||||
VERIFY_RAISES_ASSERT(svd2.matrixV());
|
||||
svd2.compute(m, ComputeFullU | ComputeFullV);
|
||||
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
|
||||
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
|
||||
internal::set_is_malloc_allowed(false);
|
||||
svd2.compute(m);
|
||||
internal::set_is_malloc_allowed(true);
|
||||
|
||||
SVD_DEFAULT(MatrixXf) svd3(3,3,ComputeFullU|ComputeFullV);
|
||||
internal::set_is_malloc_allowed(false);
|
||||
svd2.compute(m);
|
||||
internal::set_is_malloc_allowed(true);
|
||||
@ -395,168 +457,65 @@ void svd_preallocate()
|
||||
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
|
||||
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
|
||||
internal::set_is_malloc_allowed(false);
|
||||
svd2.compute(m);
|
||||
svd2.compute(m, ComputeFullU|ComputeFullV);
|
||||
internal::set_is_malloc_allowed(true);
|
||||
}
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner = 0>
|
||||
void svd_verify_assert_full_only(const MatrixType& m = MatrixType())
|
||||
template<typename SvdType,typename MatrixType>
|
||||
void svd_verify_assert(const MatrixType& m, bool fullOnly = false)
|
||||
{
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime
|
||||
};
|
||||
|
||||
typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType;
|
||||
RhsType rhs = RhsType::Zero(m.rows());
|
||||
|
||||
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd0;
|
||||
VERIFY_RAISES_ASSERT(( svd0.matrixU() ));
|
||||
VERIFY_RAISES_ASSERT(( svd0.singularValues() ));
|
||||
VERIFY_RAISES_ASSERT(( svd0.matrixV() ));
|
||||
VERIFY_RAISES_ASSERT(( svd0.solve(rhs) ));
|
||||
VERIFY_RAISES_ASSERT(( svd0.transpose().solve(rhs) ));
|
||||
VERIFY_RAISES_ASSERT(( svd0.adjoint().solve(rhs) ));
|
||||
|
||||
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd1(m);
|
||||
VERIFY_RAISES_ASSERT(( svd1.matrixU() ));
|
||||
VERIFY_RAISES_ASSERT(( svd1.matrixV() ));
|
||||
VERIFY_RAISES_ASSERT(( svd1.solve(rhs)));
|
||||
|
||||
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU) svdFullU(m);
|
||||
VERIFY_RAISES_ASSERT(( svdFullU.matrixV() ));
|
||||
VERIFY_RAISES_ASSERT(( svdFullU.solve(rhs)));
|
||||
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullV) svdFullV(m);
|
||||
VERIFY_RAISES_ASSERT(( svdFullV.matrixU() ));
|
||||
VERIFY_RAISES_ASSERT(( svdFullV.solve(rhs)));
|
||||
}
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner = 0>
|
||||
void svd_verify_assert(const MatrixType& m = MatrixType())
|
||||
{
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime
|
||||
};
|
||||
|
||||
typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType;
|
||||
RhsType rhs = RhsType::Zero(m.rows());
|
||||
|
||||
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU) svdThinU(m);
|
||||
VERIFY_RAISES_ASSERT(( svdThinU.matrixV() ));
|
||||
VERIFY_RAISES_ASSERT(( svdThinU.solve(rhs)));
|
||||
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinV) svdThinV(m);
|
||||
VERIFY_RAISES_ASSERT(( svdThinV.matrixU() ));
|
||||
VERIFY_RAISES_ASSERT(( svdThinV.solve(rhs)));
|
||||
|
||||
svd_verify_assert_full_only<MatrixType, QRPreconditioner>(m);
|
||||
}
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
void svd_compute_checks(const MatrixType& m)
|
||||
{
|
||||
typedef SVD_STATIC_OPTIONS(MatrixType, Options) SVDType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
DiagAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
|
||||
MatrixURowsAtCompileTime = SVDType::MatrixUType::RowsAtCompileTime,
|
||||
MatrixUColsAtCompileTime = SVDType::MatrixUType::ColsAtCompileTime,
|
||||
MatrixVRowsAtCompileTime = SVDType::MatrixVType::RowsAtCompileTime,
|
||||
MatrixVColsAtCompileTime = SVDType::MatrixVType::ColsAtCompileTime
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime
|
||||
};
|
||||
|
||||
SVDType staticSvd(m);
|
||||
|
||||
VERIFY(MatrixURowsAtCompileTime == RowsAtCompileTime);
|
||||
VERIFY(MatrixVRowsAtCompileTime == ColsAtCompileTime);
|
||||
if (Options & ComputeThinU) VERIFY(MatrixUColsAtCompileTime == DiagAtCompileTime);
|
||||
if (Options & ComputeFullU) VERIFY(MatrixUColsAtCompileTime == RowsAtCompileTime);
|
||||
if (Options & ComputeThinV) VERIFY(MatrixVColsAtCompileTime == DiagAtCompileTime);
|
||||
if (Options & ComputeFullV) VERIFY(MatrixVColsAtCompileTime == ColsAtCompileTime);
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
|
||||
RhsType rhs(rows);
|
||||
SvdType svd;
|
||||
VERIFY_RAISES_ASSERT(svd.matrixU())
|
||||
VERIFY_RAISES_ASSERT(svd.singularValues())
|
||||
VERIFY_RAISES_ASSERT(svd.matrixV())
|
||||
VERIFY_RAISES_ASSERT(svd.solve(rhs))
|
||||
VERIFY_RAISES_ASSERT(svd.transpose().solve(rhs))
|
||||
VERIFY_RAISES_ASSERT(svd.adjoint().solve(rhs))
|
||||
MatrixType a = MatrixType::Zero(rows, cols);
|
||||
a.setZero();
|
||||
svd.compute(a, 0);
|
||||
VERIFY_RAISES_ASSERT(svd.matrixU())
|
||||
VERIFY_RAISES_ASSERT(svd.matrixV())
|
||||
svd.singularValues();
|
||||
VERIFY_RAISES_ASSERT(svd.solve(rhs))
|
||||
|
||||
if (Options & (ComputeThinU|ComputeFullU)) VERIFY(staticSvd.computeU());
|
||||
else VERIFY(!staticSvd.computeU());
|
||||
if (Options & (ComputeThinV|ComputeFullV)) VERIFY(staticSvd.computeV());
|
||||
else VERIFY(!staticSvd.computeV());
|
||||
svd.compute(a, ComputeFullU);
|
||||
svd.matrixU();
|
||||
VERIFY_RAISES_ASSERT(svd.matrixV())
|
||||
VERIFY_RAISES_ASSERT(svd.solve(rhs))
|
||||
svd.compute(a, ComputeFullV);
|
||||
svd.matrixV();
|
||||
VERIFY_RAISES_ASSERT(svd.matrixU())
|
||||
VERIFY_RAISES_ASSERT(svd.solve(rhs))
|
||||
|
||||
if (staticSvd.computeU()) VERIFY(staticSvd.matrixU().isUnitary());
|
||||
if (staticSvd.computeV()) VERIFY(staticSvd.matrixV().isUnitary());
|
||||
|
||||
if (staticSvd.computeU() && staticSvd.computeV())
|
||||
if (!fullOnly && ColsAtCompileTime == Dynamic)
|
||||
{
|
||||
svd_test_solvers(m, staticSvd);
|
||||
svd_least_square<SVDType, MatrixType>(m);
|
||||
// svd_min_norm generates non-square matrices so it can't be used with NoQRPreconditioner
|
||||
if ((Options & internal::QRPreconditionerBits) != NoQRPreconditioner)
|
||||
svd_min_norm<MatrixType, Options>(m);
|
||||
svd.compute(a, ComputeThinU);
|
||||
svd.matrixU();
|
||||
VERIFY_RAISES_ASSERT(svd.matrixV())
|
||||
VERIFY_RAISES_ASSERT(svd.solve(rhs))
|
||||
svd.compute(a, ComputeThinV);
|
||||
svd.matrixV();
|
||||
VERIFY_RAISES_ASSERT(svd.matrixU())
|
||||
VERIFY_RAISES_ASSERT(svd.solve(rhs))
|
||||
}
|
||||
else
|
||||
{
|
||||
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
|
||||
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner = 0>
|
||||
void svd_option_checks(const MatrixType& m)
|
||||
{
|
||||
// singular values only
|
||||
svd_compute_checks<MatrixType, QRPreconditioner>(m);
|
||||
// Thin only
|
||||
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU >(m);
|
||||
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinV >(m);
|
||||
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV>(m);
|
||||
// Full only
|
||||
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU >(m);
|
||||
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullV >(m);
|
||||
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV>(m);
|
||||
// Mixed
|
||||
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV>(m);
|
||||
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV>(m);
|
||||
|
||||
typedef SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) FullSvdType;
|
||||
FullSvdType fullSvd(m);
|
||||
svd_check_full(m, fullSvd);
|
||||
svd_compare_to_full<MatrixType, FullSvdType, QRPreconditioner | ComputeFullU | ComputeFullV>(m, fullSvd);
|
||||
}
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner = 0>
|
||||
void svd_option_checks_full_only(const MatrixType& m)
|
||||
{
|
||||
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU>(m);
|
||||
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullV>(m);
|
||||
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV>(m);
|
||||
|
||||
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m);
|
||||
svd_check_full(m, fullSvd);
|
||||
}
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner = 0>
|
||||
void svd_check_max_size_matrix(int initialRows, int initialCols)
|
||||
{
|
||||
enum {
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
|
||||
int rows = MaxRowsAtCompileTime == Dynamic ? initialRows : (std::min)(initialRows, (int)MaxRowsAtCompileTime);
|
||||
int cols = MaxColsAtCompileTime == Dynamic ? initialCols : (std::min)(initialCols, (int)MaxColsAtCompileTime);
|
||||
|
||||
MatrixType m(rows, cols);
|
||||
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV) thinSvd(m);
|
||||
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV) mixedSvd1(m);
|
||||
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV) mixedSvd2(m);
|
||||
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m);
|
||||
|
||||
MatrixType n(MaxRowsAtCompileTime, MaxColsAtCompileTime);
|
||||
thinSvd.compute(n);
|
||||
mixedSvd1.compute(n);
|
||||
mixedSvd2.compute(n);
|
||||
fullSvd.compute(n);
|
||||
|
||||
MatrixX<typename MatrixType::Scalar> dynamicMatrix(MaxRowsAtCompileTime + 1, MaxColsAtCompileTime + 1);
|
||||
|
||||
VERIFY_RAISES_ASSERT(thinSvd.compute(dynamicMatrix));
|
||||
VERIFY_RAISES_ASSERT(mixedSvd1.compute(dynamicMatrix));
|
||||
VERIFY_RAISES_ASSERT(mixedSvd2.compute(dynamicMatrix));
|
||||
VERIFY_RAISES_ASSERT(fullSvd.compute(dynamicMatrix));
|
||||
}
|
||||
|
||||
#undef SVD_DEFAULT
|
||||
#undef SVD_FOR_MIN_NORM
|
||||
#undef SVD_STATIC_OPTIONS
|
||||
|
Loading…
x
Reference in New Issue
Block a user