Extend MatrixPowerTriangularAtomic for future implementation for triangular matrix power.

This commit is contained in:
Chen-Pang He 2012-09-29 02:02:12 +08:00
parent ed18d6f2ad
commit 067a5a98c8
2 changed files with 205 additions and 68 deletions

View File

@ -74,11 +74,11 @@ class MatrixPower : public MatrixPowerBase<MatrixPower<MatrixType>,MatrixType>
void compute(const Derived& b, ResultType& res, RealScalar p);
private:
EIGEN_MATRIX_POWER_PROTECTED_MEMBERS(MatrixPower)
typedef Matrix<std::complex<RealScalar>, RowsAtCompileTime, ColsAtCompileTime,
Options,MaxRowsAtCompileTime,MaxColsAtCompileTime> ComplexMatrix;
MatrixType m_tmp1, m_tmp2;
ComplexMatrix m_T, m_U, m_fT;
bool m_init;
RealScalar modfAndInit(RealScalar, RealScalar*);
@ -98,9 +98,8 @@ class MatrixPower : public MatrixPowerBase<MatrixPower<MatrixType>,MatrixType>
template<typename MatrixType>
template<typename MatrixExpression>
MatrixPower<MatrixType>::MatrixPower(const MatrixExpression& A) :
Base(A),
m_init(false)
{ /* empty body */ }
Base(A, 0)
{ }
template<typename MatrixType>
void MatrixPower<MatrixType>::compute(MatrixType& res, RealScalar p)
@ -113,7 +112,7 @@ void MatrixPower<MatrixType>::compute(MatrixType& res, RealScalar p)
break;
default:
RealScalar intpart, x = modfAndInit(p, &intpart);
res = MatrixType::Identity(m_A.rows(), m_A.cols());
res = m_Id;
computeIntPower(res, intpart);
computeFracPower(res, x);
}
@ -139,22 +138,19 @@ void MatrixPower<MatrixType>::compute(const Derived& b, ResultType& res, RealSca
template<typename MatrixType>
typename MatrixPower<MatrixType>::Base::RealScalar MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
{
static RealScalar maxAbsEival, minAbsEival;
*intpart = std::floor(x);
RealScalar res = x - *intpart;
if (!m_init && res) {
if (!m_conditionNumber && res) {
const ComplexSchur<MatrixType> schurOfA(m_A);
m_T = schurOfA.matrixT();
m_U = schurOfA.matrixU();
m_init = true;
const RealArray absTdiag = m_T.diagonal().array().abs();
maxAbsEival = absTdiag.maxCoeff();
minAbsEival = absTdiag.minCoeff();
m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff();
}
if (res > RealScalar(0.5) && res > (1-res) * std::pow(maxAbsEival/minAbsEival, res)) {
if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) {
--res;
++*intpart;
}
@ -195,7 +191,7 @@ template<typename Derived, typename ResultType>
void MatrixPower<MatrixType>::computeIntPower(const Derived& b, ResultType& res, RealScalar p)
{
if (b.cols() >= m_A.cols()) {
m_tmp2 = MatrixType::Identity(m_A.rows(), m_A.cols());
m_tmp2 = m_Id;
computeIntPower(m_tmp2, p);
res.noalias() = m_tmp2 * b;
}

View File

@ -18,7 +18,7 @@ struct recompose_complex_schur
{
template<typename ResultType, typename MatrixType>
static inline void run(ResultType& res, const MatrixType& T, const MatrixType& U)
{ res = U * (T.template triangularView<Upper>() * U.adjoint()); }
{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
};
template<>
@ -26,7 +26,21 @@ struct recompose_complex_schur<0>
{
template<typename ResultType, typename MatrixType>
static inline void run(ResultType& res, const MatrixType& T, const MatrixType& U)
{ res = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
};
template<typename Scalar, int IsComplex=NumTraits<Scalar>::IsComplex>
struct matrix_power_unwinder
{
static inline Scalar run(const Scalar& eival, const Scalar& eival0, int unwindingNumber)
{ return internal::atanh2(eival-eival0, eival+eival0) + Scalar(0, M_PI*unwindingNumber); }
};
template<typename Scalar>
struct matrix_power_unwinder<Scalar,0>
{
static inline Scalar run(Scalar eival, Scalar eival0, int)
{ return internal::atanh2(eival-eival0, eival+eival0); }
};
template<typename T>
@ -68,21 +82,21 @@ inline int matrix_power_get_pade_degree(double normIminusT)
inline int matrix_power_get_pade_degree(long double normIminusT)
{
#if LDBL_MANT_DIG == 53
const int maxPadeDegree = 7;
enum { maxPadeDegree = 7 };
const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
1.999045567181744e-1L, 2.789358995219730e-1L };
#elif LDBL_MANT_DIG <= 64
const int maxPadeDegree = 8;
enum { maxPadeDegree = 8 };
const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
#elif LDBL_MANT_DIG <= 106
const int maxPadeDegree = 10;
enum { maxPadeDegree = 10 };
const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
1.1016843812851143391275867258512e-1L };
#else
const int maxPadeDegree = 10;
enum { maxPadeDegree = 10 };
const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
@ -97,6 +111,125 @@ inline int matrix_power_get_pade_degree(long double normIminusT)
}
} // namespace internal
#define MATRIX_POWER_TRIANGULAR_2x2_SPECIALIZATION(Mode) \
template<typename MatrixType> \
class MatrixPowerTriangular2x2<MatrixType,Mode> \
{ \
private: \
enum { \
RowsAtCompileTime = MatrixType::RowsAtCompileTime, \
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime \
}; \
typedef typename MatrixType::Scalar Scalar; \
typedef typename MatrixType::RealScalar RealScalar; \
typedef Array<Scalar,RowsAtCompileTime,1,ColMajor,MaxRowsAtCompileTime> ArrayType; \
const MatrixType& m_T; \
public: \
explicit MatrixPowerTriangular2x2(const MatrixType& T) : m_T(T) { } \
void compute(MatrixType& res, RealScalar p) const; \
};
template<typename MatrixType, unsigned int Mode>
class MatrixPowerTriangular2x2;
MATRIX_POWER_TRIANGULAR_2x2_SPECIALIZATION(Upper)
MATRIX_POWER_TRIANGULAR_2x2_SPECIALIZATION(Lower)
MATRIX_POWER_TRIANGULAR_2x2_SPECIALIZATION(UnitUpper)
MATRIX_POWER_TRIANGULAR_2x2_SPECIALIZATION(UnitLower)
MATRIX_POWER_TRIANGULAR_2x2_SPECIALIZATION(StrictlyUpper)
MATRIX_POWER_TRIANGULAR_2x2_SPECIALIZATION(StrictlyLower)
template<typename MatrixType>
void MatrixPowerTriangular2x2<MatrixType,Upper>::compute(MatrixType& res, RealScalar p) const
{
using std::abs;
using std::pow;
ArrayType logTdiag = m_T.diagonal().array().log();
res.coeffRef(0,0) = pow(m_T.coeff(0,0), p);
for (int i=1; i < m_T.cols(); ++i) {
res.coeffRef(i,i) = pow(m_T.coeff(i,i), p);
if (m_T.coeff(i-1,i-1) == m_T.coeff(i,i)) {
res.coeffRef(i-1,i) = p * pow(m_T.coeff(i-1,i), p-1);
}
else if (2*abs(m_T.coeff(i-1,i-1)) < abs(m_T.coeff(i,i)) || 2*abs(m_T.coeff(i,i)) < abs(m_T.coeff(i-1,i-1))) {
res.coeffRef(i-1,i) = m_T.coeff(i-1,i) * (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_T.coeff(i,i)-m_T.coeff(i-1,i-1));
}
else {
int unwindingNumber = std::ceil((internal::imag(logTdiag[i]-logTdiag[i-1]) - M_PI) / (2*M_PI));
Scalar w = internal::matrix_power_unwinder<Scalar>::run(m_T.coeff(i,i), m_T.coeff(i-1,i-1), unwindingNumber);
res.coeffRef(i-1,i) = m_T.coeff(i-1,i) * RealScalar(2) * std::exp(RealScalar(0.5)*p*(logTdiag[i]+logTdiag[i-1])) *
std::sinh(p * w) / (m_T.coeff(i,i) - m_T.coeff(i-1,i-1));
}
}
}
template<typename MatrixType>
void MatrixPowerTriangular2x2<MatrixType,Lower>::compute(MatrixType& res, RealScalar p) const
{
using std::abs;
using std::pow;
ArrayType logTdiag = m_T.diagonal().array().log();
res.coeffRef(0,0) = pow(m_T.coeff(0,0), p);
for (int i=1; i < m_T.cols(); ++i) {
res.coeffRef(i,i) = pow(m_T.coeff(i,i), p);
if (m_T.coeff(i-1,i-1) == m_T.coeff(i,i)) {
res.coeffRef(i,i-1) = p * pow(m_T.coeff(i,i-1), p-1);
}
else if (2*abs(m_T.coeff(i-1,i-1)) < abs(m_T.coeff(i,i)) || 2*abs(m_T.coeff(i,i)) < abs(m_T.coeff(i-1,i-1))) {
res.coeffRef(i,i-1) = m_T.coeff(i,i-1) * (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_T.coeff(i,i)-m_T.coeff(i-1,i-1));
}
else {
int unwindingNumber = std::ceil((internal::imag(logTdiag[i]-logTdiag[i-1]) - M_PI) / (2*M_PI));
Scalar w = internal::matrix_power_unwinder<Scalar>::run(m_T.coeff(i,i), m_T.coeff(i-1,i-1), unwindingNumber);
res.coeffRef(i,i-1) = m_T.coeff(i,i-1) * RealScalar(2) * std::exp(RealScalar(0.5)*p*(logTdiag[i]+logTdiag[i-1])) *
std::sinh(p * w) / (m_T.coeff(i,i) - m_T.coeff(i-1,i-1));
}
}
}
template<typename MatrixType>
void MatrixPowerTriangular2x2<MatrixType,UnitUpper>::compute(MatrixType& res, RealScalar p) const
{
for (int i=1; i < m_T.cols(); ++i)
res.coeffRef(i-1,i) = p * std::pow(m_T.coeff(i-1,i), p-1);
}
template<typename MatrixType>
void MatrixPowerTriangular2x2<MatrixType,UnitLower>::compute(MatrixType& res, RealScalar p) const
{
for (int i=1; i < m_T.cols(); ++i) {
res.coeffRef(i,i-1) = p * std::pow(m_T.coeff(i,i-1), p-1);
}
}
template<typename MatrixType>
void MatrixPowerTriangular2x2<MatrixType,StrictlyUpper>::compute(MatrixType& res, RealScalar p) const
{
RealScalar diag = !p ? 1 : 0;
res.coeffRef(0,0) = diag;
for (int i=1; i < m_T.cols(); ++i) {
res.coeffRef(i,i) = diag;
res.coeffRef(i-1,i) = p * std::pow(m_T.coeff(i-1,i), p-1);
}
}
template<typename MatrixType>
void MatrixPowerTriangular2x2<MatrixType,StrictlyLower>::compute(MatrixType& res, RealScalar p) const
{
RealScalar diag = !p ? 1 : 0;
res.coeffRef(0,0) = diag;
for (int i=1; i < m_T.cols(); ++i) {
res.coeffRef(i,i) = diag;
res.coeffRef(i,i-1) = p * std::pow(m_T.coeff(i,i-1), p-1);
}
}
template<typename MatrixType, unsigned int Mode=Upper>
class MatrixPowerTriangularAtomic
{
@ -113,7 +246,6 @@ class MatrixPowerTriangularAtomic
const MatrixType m_Id;
void computePade(int degree, const MatrixType& IminusT, MatrixType& res, RealScalar p) const;
void compute2x2(MatrixType& res, RealScalar p) const;
void computeBig(MatrixType& res, RealScalar p) const;
public:
@ -125,7 +257,7 @@ template<typename MatrixType, unsigned int Mode>
MatrixPowerTriangularAtomic<MatrixType,Mode>::MatrixPowerTriangularAtomic(const MatrixType& T) :
m_T(T),
m_Id(MatrixType::Identity(T.rows(), T.cols()))
{ /* empty body */ }
{ }
template<typename MatrixType, unsigned int Mode>
void MatrixPowerTriangularAtomic<MatrixType,Mode>::compute(MatrixType& res, RealScalar p) const
@ -137,7 +269,7 @@ void MatrixPowerTriangularAtomic<MatrixType,Mode>::compute(MatrixType& res, Real
res(0,0) = std::pow(m_T(0,0), p);
break;
case 2:
compute2x2(res, p);
MatrixPowerTriangular2x2<MatrixType,Mode>(m_T).compute(res, p);
break;
default:
computeBig(res, p);
@ -157,42 +289,16 @@ void MatrixPowerTriangularAtomic<MatrixType,Mode>::computePade(int degree, const
res += m_Id;
}
template<typename MatrixType, unsigned int Mode>
void MatrixPowerTriangularAtomic<MatrixType,Mode>::compute2x2(MatrixType& res, RealScalar p) const
{
using std::abs;
using std::pow;
ArrayType logTdiag = m_T.diagonal().array().log();
res(0,0) = pow(m_T(0,0), p);
for (int i=1; i < m_T.cols(); ++i) {
res(i,i) = pow(m_T(i,i), p);
if (m_T(i-1,i-1) == m_T(i,i)) {
res(i-1,i) = p * pow(m_T(i-1,i), p-1);
}
else if (2*abs(m_T(i-1,i-1)) < abs(m_T(i,i)) || 2*abs(m_T(i,i)) < abs(m_T(i-1,i-1))) {
res(i-1,i) = m_T(i-1,i) * (res(i,i)-res(i-1,i-1)) / (m_T(i,i)-m_T(i-1,i-1));
}
else {
// computation in previous branch is inaccurate if abs(m_T(i,i)) \approx abs(m_T(i-1,i-1))
int unwindingNumber = std::ceil(((logTdiag[i]-logTdiag[i-1]).imag() - M_PI) / (2*M_PI));
Scalar w = internal::atanh2(m_T(i,i)-m_T(i-1,i-1), m_T(i,i)+m_T(i-1,i-1)) + Scalar(0, M_PI*unwindingNumber);
res(i-1,i) = m_T(i-1,i) * RealScalar(2) * std::exp(RealScalar(0.5) * p * (logTdiag[i]+logTdiag[i-1])) *
std::sinh(p * w) / (m_T(i,i) - m_T(i-1,i-1));
}
}
}
template<typename MatrixType, unsigned int Mode>
void MatrixPowerTriangularAtomic<MatrixType,Mode>::computeBig(MatrixType& res, RealScalar p) const
{
const int digits = std::numeric_limits<RealScalar>::digits;
enum { digits = std::numeric_limits<RealScalar>::digits };
const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision
digits <= 53? 2.789358995219730e-1: // double precision
digits <= 64? 2.4471944416607995472e-1L: // extended precision
digits <= 106? 1.1016843812851143391275867258512e-01: // double-double
9.134603732914548552537150753385375e-02; // quadruple precision
digits <= 106? 1.1016843812851143391275867258512e-1L: // double-double
9.134603732914548552537150753385375e-2L; // quadruple precision
const MatrixPowerTriangular2x2<MatrixType,Mode> atomic2x2(m_T);
MatrixType IminusT, sqrtT, T=m_T;
RealScalar normIminusT;
int degree, degree2, numberOfSquareRoots=0, numberOfExtraSquareRoots=0;
@ -214,14 +320,14 @@ void MatrixPowerTriangularAtomic<MatrixType,Mode>::computeBig(MatrixType& res, R
computePade(degree, IminusT, res, p);
for (; numberOfSquareRoots; --numberOfSquareRoots) {
compute2x2(res, std::ldexp(p,-numberOfSquareRoots));
atomic2x2.compute(res, std::ldexp(p,-numberOfSquareRoots));
res *= res;
}
compute2x2(res, p);
atomic2x2.compute(res, p);
}
#define EIGEN_MATRIX_POWER_PUBLIC_INTERFACE(Derived) \
typedef MatrixPowerBase<Derived<MatrixType>, MatrixType> Base; \
typedef MatrixPowerBase<Derived, MatrixType> Base; \
using Base::RowsAtCompileTime; \
using Base::ColsAtCompileTime; \
using Base::Options; \
@ -229,8 +335,14 @@ void MatrixPowerTriangularAtomic<MatrixType,Mode>::computeBig(MatrixType& res, R
using Base::MaxColsAtCompileTime; \
typedef typename Base::Scalar Scalar; \
typedef typename Base::RealScalar RealScalar; \
typedef typename Base::RealArray RealArray; \
using Base::m_A;
typedef typename Base::RealArray RealArray;
#define EIGEN_MATRIX_POWER_PROTECTED_MEMBERS(Derived) \
using Base::m_A; \
using Base::m_Id; \
using Base::m_tmp1; \
using Base::m_tmp2; \
using Base::m_conditionNumber;
#define EIGEN_MATRIX_POWER_PRODUCT_PUBLIC_INTERFACE(Derived) \
typedef MatrixPowerProductBase<Derived, Lhs, Rhs> Base; \
@ -277,34 +389,63 @@ class MatrixPowerBase
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
explicit MatrixPowerBase(const MatrixType& A)
: m_A(A), m_del(false) { }
explicit MatrixPowerBase(const MatrixType& A, RealScalar cond);
template<typename OtherDerived>
explicit MatrixPowerBase(const MatrixBase<OtherDerived>& A)
: m_A(*new MatrixType(A)), m_del(true) { }
explicit MatrixPowerBase(const MatrixBase<OtherDerived>& A, RealScalar cond);
~MatrixPowerBase()
{ if (m_del) delete &m_A; }
~MatrixPowerBase();
void compute(MatrixType& res, RealScalar p)
{ static_cast<Derived*>(this)->compute(res,p); }
void compute(MatrixType& res, RealScalar p);
template<typename OtherDerived, typename ResultType>
void compute(const OtherDerived& b, ResultType& res, RealScalar p)
{ static_cast<Derived*>(this)->compute(b,res,p); }
void compute(const OtherDerived& b, ResultType& res, RealScalar p);
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
protected:
typedef Array<RealScalar,RowsAtCompileTime,1,ColMajor,MaxRowsAtCompileTime> RealArray;
const MatrixType& m_A;
const MatrixType m_Id;
MatrixType m_tmp1, m_tmp2;
RealScalar m_conditionNumber;
private:
const bool m_del; // whether to delete the pointer at destruction
};
template<typename Derived, typename MatrixType>
MatrixPowerBase<Derived,MatrixType>::MatrixPowerBase(const MatrixType& A, RealScalar cond) :
m_A(A),
m_Id(MatrixType::Identity(A.rows(),A.cols())),
m_conditionNumber(cond),
m_del(false)
{ }
template<typename Derived, typename MatrixType>
template<typename OtherDerived>
MatrixPowerBase<Derived,MatrixType>::MatrixPowerBase(const MatrixBase<OtherDerived>& A, RealScalar cond) :
m_A(*new MatrixType(A)),
m_Id(MatrixType::Identity(A.rows(),A.cols())),
m_conditionNumber(cond),
m_del(true)
{ }
template<typename Derived, typename MatrixType>
MatrixPowerBase<Derived,MatrixType>::~MatrixPowerBase()
{ if (m_del) delete &m_A; }
template<typename Derived, typename MatrixType>
void MatrixPowerBase<Derived,MatrixType>::compute(MatrixType& res, RealScalar p)
{ static_cast<Derived*>(this)->compute(res,p); }
template<typename Derived, typename MatrixType>
template<typename OtherDerived, typename ResultType>
void MatrixPowerBase<Derived,MatrixType>::compute(const OtherDerived& b, ResultType& res, RealScalar p)
{ static_cast<Derived*>(this)->compute(b,res,p); }
template<typename Derived, typename Lhs, typename Rhs>
class MatrixPowerProductBase : public MatrixBase<Derived>
{