* added a Tridiagonalization class for selfadjoint matrices

* added MatrixBase::real()
* added the ability to extract a selfadjoint matrix from the
  lower or upper part of a matrix, e.g.:
    m.extract<Upper|SelfAdjoint>()
  will ignore the strict lower part and return a selfadjoint.
  This is compatible with ZeroDiag and UnitDiag.
This commit is contained in:
Gael Guennebaud 2008-06-01 17:20:18 +00:00
parent dc5fd8dfff
commit 06752b2b77
8 changed files with 269 additions and 4 deletions

View File

@ -6,6 +6,7 @@
namespace Eigen {
#include "src/QR/QR.h"
#include "src/QR/Tridiagonalization.h"
#include "src/QR/EigenSolver.h"
} // namespace Eigen

View File

@ -139,7 +139,7 @@ MatrixBase<Derived>::cwiseAbs2() const
return derived();
}
/** \returns an expression of the complex conjugate of *this.
/** \returns an expression of the complex conjugate of \c *this.
*
* \sa adjoint() */
template<typename Derived>
@ -149,6 +149,16 @@ MatrixBase<Derived>::conjugate() const
return ConjugateReturnType(derived());
}
/** \returns an expression of the real part of \c *this.
*
* \sa adjoint() */
template<typename Derived>
inline const typename MatrixBase<Derived>::RealReturnType
MatrixBase<Derived>::real() const
{
return derived();
}
/** \returns an expression of *this with the \a Scalar type casted to
* \a NewScalar.
*

View File

@ -77,7 +77,7 @@ template<typename MatrixType, unsigned int Mode> class Extract
inline Scalar _coeff(int row, int col) const
{
if(Flags & LowerTriangularBit ? col>row : row>col)
return (Scalar)0;
return (Flags & SelfAdjointBit) ? ei_conj(m_matrix.coeff(col, row)) : (Scalar)0;
if(Flags & UnitDiagBit)
return col==row ? (Scalar)1 : m_matrix.coeff(row, col);
else if(Flags & ZeroDiagBit)

View File

@ -204,6 +204,19 @@ template<typename Scalar, typename NewType>
struct ei_functor_traits<ei_scalar_cast_op<Scalar,NewType> >
{ enum { Cost = ei_is_same_type<Scalar, NewType>::ret ? 0 : NumTraits<NewType>::AddCost, IsVectorizable = false }; };
/** \internal
* \brief Template functor to extract the real part of a complex
*
* \sa class CwiseUnaryOp, MatrixBase::real()
*/
template<typename Scalar>
struct ei_scalar_real_op EIGEN_EMPTY_STRUCT {
typedef typename NumTraits<Scalar>::Real result_type;
inline result_type operator() (const Scalar& a) const { return ei_real(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_real_op<Scalar> >
{ enum { Cost = 0, IsVectorizable = false }; };
/** \internal
* \brief Template functor to multiply a scalar by a fixed other one

View File

@ -197,6 +197,8 @@ template<typename Derived> class MatrixBase : public ArrayBase<Derived>
CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Derived>,
Derived&
>::ret ConjugateReturnType;
/** the return type of MatrixBase::real() */
typedef CwiseUnaryOp<ei_scalar_real_op<Scalar>, Derived> RealReturnType;
/** the return type of MatrixBase::adjoint() */
typedef Transpose<NestByValue<typename ei_unref<ConjugateReturnType>::type> >
AdjointReturnType;
@ -477,6 +479,7 @@ template<typename Derived> class MatrixBase : public ArrayBase<Derived>
/// \name Coefficient-wise operations
//@{
const ConjugateReturnType conjugate() const;
const RealReturnType real() const;
template<typename OtherDerived>
const CwiseBinaryOp<ei_scalar_product_op<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>

View File

@ -59,8 +59,6 @@ const unsigned int Upper = UpperTriangularBit;
const unsigned int StrictlyUpper = UpperTriangularBit | ZeroDiagBit;
const unsigned int Lower = LowerTriangularBit;
const unsigned int StrictlyLower = LowerTriangularBit | ZeroDiagBit;
// additional possible values for the Mode parameter of part()
const unsigned int SelfAdjoint = SelfAdjointBit;
// additional possible values for the Mode parameter of extract()

View File

@ -59,6 +59,7 @@ template<typename Scalar> struct ei_scalar_product_op;
template<typename Scalar> struct ei_scalar_quotient_op;
template<typename Scalar> struct ei_scalar_opposite_op;
template<typename Scalar> struct ei_scalar_conjugate_op;
template<typename Scalar> struct ei_scalar_real_op;
template<typename Scalar> struct ei_scalar_abs_op;
template<typename Scalar> struct ei_scalar_abs2_op;
template<typename Scalar> struct ei_scalar_sqrt_op;

239
Eigen/src/QR/Tridiagonalization.h Executable file
View File

@ -0,0 +1,239 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRIDIAGONALIZATION_H
#define EIGEN_TRIDIAGONALIZATION_H
/** \class Tridiagonalization
*
* \brief Trigiagonal decomposition of a selfadjoint matrix
*
* \param MatrixType the type of the matrix of which we are computing the eigen decomposition
*
* This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
* \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitatry and \f$ T \f$ a real symmetric tridiagonal matrix
*
* \sa MatrixBase::tridiagonalize()
*/
template<typename _MatrixType> class Tridiagonalization
{
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
enum {SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic
? Dynamic
: MatrixType::RowsAtCompileTime-1};
typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType;
typedef typename NestByValue<DiagonalCoeffs<MatrixType> >::RealReturnType DiagonalType;
typedef typename NestByValue<DiagonalCoeffs<
NestByValue<Block<
MatrixType,SizeMinusOne,SizeMinusOne> > > >::RealReturnType SubDiagonalType;
Tridiagonalization()
{}
Tridiagonalization(int rows, int cols)
: m_matrix(rows,cols), m_hCoeffs(rows-1)
{}
Tridiagonalization(const MatrixType& matrix)
: m_matrix(matrix),
m_hCoeffs(matrix.cols()-1)
{
_compute(m_matrix, m_hCoeffs);
}
/** Computes or re-compute the tridiagonalization for the matrix \a matrix.
*
* This method allows to re-use the allocated data.
*/
void compute(const MatrixType& matrix)
{
m_matrix = matrix;
m_hCoeffs.resize(matrix.rows()-1);
_compute(m_matrix, m_hCoeffs);
}
/** \returns the householder coefficients allowing to
* reconstruct the matrix Q from the packed data.
*
* \sa packedMatrix()
*/
CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; }
/** \returns the internal result of the decomposition.
*
* The returned matrix contains the following information:
* - the strict upper part is equal to the input matrix A
* - the diagonal and lower sub-diagonal represent the tridiagonal symmetric matrix (real).
* - the rest of the lower part contains the Householder vectors that, combined with
* Householder coefficients returned by householderCoefficients(),
* allows to reconstruct the matrix Q as follow:
* Q = H_{N-1} ... H_1 H_0
* where the matrices H are the Householder transformation:
* H_i = (I - h_i * v_i * v_i')
* where h_i == householderCoefficients()[i] and v_i is a Householder vector:
* v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ]
*
* See LAPACK for further details on this packed storage.
*/
const MatrixType& packedMatrix(void) const { return m_matrix; }
MatrixType matrixQ(void) const;
const DiagonalType diagonal(void) const;
const SubDiagonalType subDiagonal(void) const;
private:
static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs);
protected:
MatrixType m_matrix;
CoeffVectorType m_hCoeffs;
};
/** \internal
* Performs a tridiagonal decomposition of \a matA in place.
*
* \param matA the input selfadjoint matrix
* \param hCoeffs returned Householder coefficients
*
* The result is written in the lower triangular part of \a matA:
*
* \sa packedMatrix()
*/
template<typename MatrixType>
void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs)
{
assert(matA.rows()==matA.cols());
int n = matA.rows();
for (int i = 0; i<n-2; ++i)
{
// let's consider the vector v = i-th column starting at position i+1
// start of the householder transformation
// squared norm of the vector v skipping the first element
RealScalar v1norm2 = matA.col(i).end(n-(i+2)).norm2();
if (ei_isMuchSmallerThan(v1norm2,static_cast<Scalar>(1)))
{
hCoeffs.coeffRef(i) = 0.;
}
else
{
Scalar v0 = matA.col(i).coeff(i+1);
RealScalar beta = ei_sqrt(ei_abs2(v0)+v1norm2);
if (ei_real(v0)>=0.)
beta = -beta;
matA.col(i).end(n-(i+2)) *= (1./(v0-beta));
matA.col(i).coeffRef(i+1) = beta;
Scalar h = (beta - v0) / beta;
// end of the householder transformation
// Apply similarity transformation to remaining columns,
// i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1)
matA.col(i).coeffRef(i+1) = 1;
// let's use the end of hCoeffs to store temporary values
hCoeffs.end(n-i-1) = h * (matA.corner(BottomRight,n-i-1,n-i-1).template extract<Lower|SelfAdjoint>()
* matA.col(i).end(n-i-1));
hCoeffs.end(n-i-1) += (h * (-0.5) * matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1)))
* matA.col(i).end(n-i-1);
matA.corner(BottomRight,n-i-1,n-i-1).template part<Lower>() =
matA.corner(BottomRight,n-i-1,n-i-1) - (
(matA.col(i).end(n-i-1) * hCoeffs.end(n-i-1).adjoint()).lazy()
+ (hCoeffs.end(n-i-1) * matA.col(i).end(n-i-1).adjoint()).lazy() );
// FIXME check that the above expression does follow the lazy path (no temporary and
// only lower products are evaluated)
// FIXME can we avoid to evaluate twice the diagonal products ?
// (in a simple way otherwise it's overkill)
matA.col(i).coeffRef(i+1) = beta;
hCoeffs.coeffRef(i) = h;
}
}
if (NumTraits<Scalar>::IsComplex)
{
// householder transformation on the remaining single scalar
int i = n-2;
Scalar v0 = matA.col(i).coeff(i+1);
RealScalar beta = ei_abs(v0);
if (ei_real(v0)>=0.)
beta = -beta;
matA.col(i).coeffRef(i+1) = beta;
hCoeffs.coeffRef(i) = (beta - v0) / beta;
}
}
/** reconstructs and returns the matrix Q */
template<typename MatrixType>
typename Tridiagonalization<MatrixType>::MatrixType
Tridiagonalization<MatrixType>::matrixQ(void) const
{
int n = m_matrix.rows();
MatrixType matQ = MatrixType::identity(n,n);
for (int i = n-2; i>=0; i--)
{
Scalar tmp = m_matrix.coeff(i+1,i);
m_matrix.const_cast_derived().coeffRef(i+1,i) = 1;
matQ.corner(BottomRight,n-i-1,n-i-1) -=
((m_hCoeffs[i] * m_matrix.col(i).end(n-i-1)) *
(m_matrix.col(i).end(n-i-1).adjoint() * matQ.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy();
m_matrix.const_cast_derived().coeffRef(i+1,i) = tmp;
}
return matQ;
}
/** \returns an expression of the diagonal vector */
template<typename MatrixType>
const typename Tridiagonalization<MatrixType>::DiagonalType
Tridiagonalization<MatrixType>::diagonal(void) const
{
return m_matrix.diagonal().nestByValue().real();
}
/** \returns an expression of the sub-diagonal vector */
template<typename MatrixType>
const typename Tridiagonalization<MatrixType>::SubDiagonalType
Tridiagonalization<MatrixType>::subDiagonal(void) const
{
int n = m_matrix.rows();
return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1)
.nestByValue().diagonal().nestByValue().real();
}
#endif // EIGEN_TRIDIAGONALIZATION_H