mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-12 19:20:36 +08:00
in ScalarMultiple, make the factor type independent from the matrix scalar type.
This is an optimization for complex matrices, allowing to do only a real multiplication when a complex multiplication is not needed, e.g. in normalized().
This commit is contained in:
parent
dad245af56
commit
05a49547e1
@ -89,7 +89,8 @@ typename NumTraits<Scalar>::Real MatrixBase<Scalar, Derived>::norm() const
|
||||
}
|
||||
|
||||
template<typename Scalar, typename Derived>
|
||||
ScalarMultiple<Derived> MatrixBase<Scalar, Derived>::normalized() const
|
||||
const ScalarMultiple<typename NumTraits<Scalar>::Real, Derived>
|
||||
MatrixBase<Scalar, Derived>::normalized() const
|
||||
{
|
||||
return (*this) / norm();
|
||||
}
|
||||
|
@ -172,4 +172,21 @@ inline bool isApprox(const std::complex<double>& a, const std::complex<double>&
|
||||
}
|
||||
// isApproxOrLessThan wouldn't make sense for complex numbers
|
||||
|
||||
#define EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(T,U) \
|
||||
inline std::complex<T> operator*(U a, const std::complex<T>& b) \
|
||||
{ \
|
||||
return std::complex<T>(static_cast<T>(a)*b.real(), \
|
||||
static_cast<T>(a)*b.imag()); \
|
||||
} \
|
||||
inline std::complex<T> operator*(const std::complex<T>& b, U a) \
|
||||
{ \
|
||||
return std::complex<T>(static_cast<T>(a)*b.real(), \
|
||||
static_cast<T>(a)*b.imag()); \
|
||||
}
|
||||
|
||||
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(int, float)
|
||||
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(int, double)
|
||||
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(float, double)
|
||||
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(double, float)
|
||||
|
||||
#endif // EIGEN_MATHFUNCTIONS_H
|
||||
|
@ -149,7 +149,7 @@ template<typename Scalar, typename Derived> class MatrixBase
|
||||
Scalar dot(const OtherDerived& other) const;
|
||||
RealScalar norm2() const;
|
||||
RealScalar norm() const;
|
||||
ScalarMultiple<Derived> normalized() const;
|
||||
const ScalarMultiple<RealScalar, Derived> normalized() const;
|
||||
|
||||
static Eval<Random<Derived> > random(int rows, int cols);
|
||||
static Eval<Random<Derived> > random(int size);
|
||||
|
@ -26,19 +26,19 @@
|
||||
#ifndef EIGEN_SCALARMULTIPLE_H
|
||||
#define EIGEN_SCALARMULTIPLE_H
|
||||
|
||||
template<typename MatrixType> class ScalarMultiple : NoOperatorEquals,
|
||||
public MatrixBase<typename MatrixType::Scalar, ScalarMultiple<MatrixType> >
|
||||
template<typename FactorType, typename MatrixType> class ScalarMultiple : NoOperatorEquals,
|
||||
public MatrixBase<typename MatrixType::Scalar, ScalarMultiple<FactorType, MatrixType> >
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Ref MatRef;
|
||||
friend class MatrixBase<typename MatrixType::Scalar, ScalarMultiple<MatrixType> >;
|
||||
friend class MatrixBase<Scalar, ScalarMultiple<FactorType, MatrixType> >;
|
||||
|
||||
ScalarMultiple(const MatRef& matrix, Scalar scalar)
|
||||
: m_matrix(matrix), m_scalar(scalar) {}
|
||||
ScalarMultiple(const MatRef& matrix, FactorType factor)
|
||||
: m_matrix(matrix), m_factor(factor) {}
|
||||
|
||||
ScalarMultiple(const ScalarMultiple& other)
|
||||
: m_matrix(other.m_matrix), m_scalar(other.m_scalar) {}
|
||||
: m_matrix(other.m_matrix), m_factor(other.m_factor) {}
|
||||
|
||||
private:
|
||||
static const int _RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
@ -50,35 +50,35 @@ template<typename MatrixType> class ScalarMultiple : NoOperatorEquals,
|
||||
|
||||
Scalar _coeff(int row, int col) const
|
||||
{
|
||||
return m_matrix.coeff(row, col) * m_scalar;
|
||||
return m_factor * m_matrix.coeff(row, col);
|
||||
}
|
||||
|
||||
protected:
|
||||
const MatRef m_matrix;
|
||||
const Scalar m_scalar;
|
||||
const FactorType m_factor;
|
||||
};
|
||||
|
||||
#define EIGEN_MAKE_SCALAR_OPS(OtherScalar) \
|
||||
#define EIGEN_MAKE_SCALAR_OPS(FactorType) \
|
||||
template<typename Scalar, typename Derived> \
|
||||
const ScalarMultiple<Derived> \
|
||||
const ScalarMultiple<FactorType, Derived> \
|
||||
operator*(const MatrixBase<Scalar, Derived>& matrix, \
|
||||
OtherScalar scalar) \
|
||||
FactorType scalar) \
|
||||
{ \
|
||||
return ScalarMultiple<Derived>(matrix.ref(), scalar); \
|
||||
return ScalarMultiple<FactorType, Derived>(matrix.ref(), scalar); \
|
||||
} \
|
||||
\
|
||||
template<typename Scalar, typename Derived> \
|
||||
const ScalarMultiple<Derived> \
|
||||
operator*(OtherScalar scalar, \
|
||||
const ScalarMultiple<FactorType, Derived> \
|
||||
operator*(FactorType scalar, \
|
||||
const MatrixBase<Scalar, Derived>& matrix) \
|
||||
{ \
|
||||
return ScalarMultiple<Derived>(matrix.ref(), scalar); \
|
||||
return ScalarMultiple<FactorType, Derived>(matrix.ref(), scalar); \
|
||||
} \
|
||||
\
|
||||
template<typename Scalar, typename Derived> \
|
||||
const ScalarMultiple<Derived> \
|
||||
const ScalarMultiple<FactorType, Derived> \
|
||||
operator/(const MatrixBase<Scalar, Derived>& matrix, \
|
||||
OtherScalar scalar) \
|
||||
FactorType scalar) \
|
||||
{ \
|
||||
assert(NumTraits<Scalar>::HasFloatingPoint); \
|
||||
return matrix * (static_cast<Scalar>(1) / scalar); \
|
||||
@ -86,14 +86,14 @@ operator/(const MatrixBase<Scalar, Derived>& matrix, \
|
||||
\
|
||||
template<typename Scalar, typename Derived> \
|
||||
Derived & \
|
||||
MatrixBase<Scalar, Derived>::operator*=(const OtherScalar &other) \
|
||||
MatrixBase<Scalar, Derived>::operator*=(const FactorType &other) \
|
||||
{ \
|
||||
return *this = *this * other; \
|
||||
} \
|
||||
\
|
||||
template<typename Scalar, typename Derived> \
|
||||
Derived & \
|
||||
MatrixBase<Scalar, Derived>::operator/=(const OtherScalar &other) \
|
||||
MatrixBase<Scalar, Derived>::operator/=(const FactorType &other) \
|
||||
{ \
|
||||
return *this = *this / other; \
|
||||
}
|
||||
|
@ -97,7 +97,7 @@ template<typename MatrixType> class Opposite;
|
||||
template<typename Lhs, typename Rhs> class Sum;
|
||||
template<typename Lhs, typename Rhs> class Difference;
|
||||
template<typename Lhs, typename Rhs> class Product;
|
||||
template<typename MatrixType> class ScalarMultiple;
|
||||
template<typename FactorType, typename MatrixType> class ScalarMultiple;
|
||||
template<typename MatrixType> class Random;
|
||||
template<typename MatrixType> class Zero;
|
||||
template<typename MatrixType> class Ones;
|
||||
|
Loading…
x
Reference in New Issue
Block a user