mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
Added support for tensor inflation.
This commit is contained in:
parent
b900fe47d5
commit
05787f8367
@ -85,6 +85,7 @@
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h"
|
||||
|
@ -471,6 +471,11 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
||||
stride(const Strides& strides) const {
|
||||
return TensorStridingOp<const Strides, const Derived>(derived(), strides);
|
||||
}
|
||||
template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorInflationOp<const Strides, const Derived>
|
||||
inflate(const Strides& strides) const {
|
||||
return TensorInflationOp<const Strides, const Derived>(derived(), strides);
|
||||
}
|
||||
|
||||
// Support for custom unary and binary operations
|
||||
template <typename CustomUnaryFunc>
|
||||
|
@ -39,6 +39,7 @@ template<typename ReverseDimensions, typename XprType> class TensorReverseOp;
|
||||
template<typename PaddingDimensions, typename XprType> class TensorPaddingOp;
|
||||
template<typename Shuffle, typename XprType> class TensorShufflingOp;
|
||||
template<typename Strides, typename XprType> class TensorStridingOp;
|
||||
template<typename Strides, typename XprType> class TensorInflationOp;
|
||||
template<typename Generator, typename XprType> class TensorGeneratorOp;
|
||||
template<typename LeftXprType, typename RightXprType> class TensorAssignOp;
|
||||
|
||||
|
219
unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h
Normal file
219
unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h
Normal file
@ -0,0 +1,219 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2015 Ke Yang <yangke@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
|
||||
#define EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorInflation
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor inflation class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template<typename Strides, typename XprType>
|
||||
struct traits<TensorInflationOp<Strides, XprType> > : public traits<XprType>
|
||||
{
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef traits<XprType> XprTraits;
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
typedef typename XprTraits::StorageKind StorageKind;
|
||||
typedef typename XprTraits::Index Index;
|
||||
typedef typename XprType::Nested Nested;
|
||||
typedef typename remove_reference<Nested>::type _Nested;
|
||||
static const int NumDimensions = XprTraits::NumDimensions;
|
||||
static const int Layout = XprTraits::Layout;
|
||||
};
|
||||
|
||||
template<typename Strides, typename XprType>
|
||||
struct eval<TensorInflationOp<Strides, XprType>, Eigen::Dense>
|
||||
{
|
||||
typedef const TensorInflationOp<Strides, XprType>& type;
|
||||
};
|
||||
|
||||
template<typename Strides, typename XprType>
|
||||
struct nested<TensorInflationOp<Strides, XprType>, 1, typename eval<TensorInflationOp<Strides, XprType> >::type>
|
||||
{
|
||||
typedef TensorInflationOp<Strides, XprType> type;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename Strides, typename XprType>
|
||||
class TensorInflationOp : public TensorBase<TensorInflationOp<Strides, XprType>, ReadOnlyAccessors>
|
||||
{
|
||||
public:
|
||||
typedef typename Eigen::internal::traits<TensorInflationOp>::Scalar Scalar;
|
||||
typedef typename Eigen::internal::traits<TensorInflationOp>::Packet Packet;
|
||||
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||
typedef typename Eigen::internal::nested<TensorInflationOp>::type Nested;
|
||||
typedef typename Eigen::internal::traits<TensorInflationOp>::StorageKind StorageKind;
|
||||
typedef typename Eigen::internal::traits<TensorInflationOp>::Index Index;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorInflationOp(const XprType& expr, const Strides& strides)
|
||||
: m_xpr(expr), m_strides(strides) {}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const Strides& strides() const { return m_strides; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const typename internal::remove_all<typename XprType::Nested>::type&
|
||||
expression() const { return m_xpr; }
|
||||
|
||||
protected:
|
||||
typename XprType::Nested m_xpr;
|
||||
const Strides m_strides;
|
||||
};
|
||||
|
||||
// Eval as rvalue
|
||||
template<typename Strides, typename ArgType, typename Device>
|
||||
struct TensorEvaluator<const TensorInflationOp<Strides, ArgType>, Device>
|
||||
{
|
||||
typedef TensorInflationOp<Strides, ArgType> XprType;
|
||||
typedef typename XprType::Index Index;
|
||||
static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
|
||||
typedef DSizes<Index, NumDims> Dimensions;
|
||||
|
||||
enum {
|
||||
IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
|
||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||
BlockAccess = false,
|
||||
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||
CoordAccess = false, // to be implemented
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||
: m_impl(op.expression(), device), m_strides(op.strides())
|
||||
{
|
||||
m_dimensions = m_impl.dimensions();
|
||||
// Expand each dimension to the inflated dimension.
|
||||
for (int i = 0; i < NumDims; ++i) {
|
||||
m_dimensions[i] = (m_dimensions[i] - 1) * op.strides()[i] + 1;
|
||||
}
|
||||
|
||||
// Remember the strides for fast division.
|
||||
for (int i = 0; i < NumDims; ++i) {
|
||||
m_fastStrides[i] = internal::TensorIntDivisor<Index>(m_strides[i]);
|
||||
}
|
||||
|
||||
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
||||
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
||||
m_outputStrides[0] = 1;
|
||||
m_inputStrides[0] = 1;
|
||||
for (int i = 1; i < NumDims; ++i) {
|
||||
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
|
||||
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
|
||||
}
|
||||
} else { // RowMajor
|
||||
m_outputStrides[NumDims-1] = 1;
|
||||
m_inputStrides[NumDims-1] = 1;
|
||||
for (int i = NumDims - 2; i >= 0; --i) {
|
||||
m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
|
||||
m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
|
||||
m_impl.evalSubExprsIfNeeded(NULL);
|
||||
return true;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
||||
m_impl.cleanup();
|
||||
}
|
||||
|
||||
// Computes the input index given the output index. Returns true if the output
|
||||
// index doesn't fall into a hole.
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool getInputIndex(Index index, Index* inputIndex) const
|
||||
{
|
||||
eigen_assert(index < dimensions().TotalSize());
|
||||
*inputIndex = 0;
|
||||
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
||||
for (int i = NumDims - 1; i > 0; --i) {
|
||||
const Index idx = index / m_outputStrides[i];
|
||||
if (idx != idx / m_fastStrides[i] * m_strides[i]) {
|
||||
return false;
|
||||
}
|
||||
*inputIndex += idx / m_strides[i] * m_inputStrides[i];
|
||||
index -= idx * m_outputStrides[i];
|
||||
}
|
||||
if (index != index / m_fastStrides[0] * m_strides[0]) {
|
||||
return false;
|
||||
}
|
||||
*inputIndex += index / m_strides[0];
|
||||
return true;
|
||||
} else {
|
||||
for (int i = 0; i < NumDims - 1; ++i) {
|
||||
const Index idx = index / m_outputStrides[i];
|
||||
if (idx != idx / m_fastStrides[i] * m_strides[i]) {
|
||||
return false;
|
||||
}
|
||||
*inputIndex += idx / m_strides[i] * m_inputStrides[i];
|
||||
index -= idx * m_outputStrides[i];
|
||||
}
|
||||
if (index != index / m_fastStrides[NumDims-1] * m_strides[NumDims-1]) {
|
||||
return false;
|
||||
}
|
||||
*inputIndex += index / m_strides[NumDims - 1];
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
Index inputIndex = 0;
|
||||
if (getInputIndex(index, &inputIndex)) {
|
||||
return m_impl.coeff(inputIndex);
|
||||
} else {
|
||||
return Scalar(0);
|
||||
}
|
||||
}
|
||||
|
||||
// TODO(yangke): optimize this function so that we can detect and produce
|
||||
// all-zero packets
|
||||
template<int LoadMode>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
||||
{
|
||||
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
|
||||
|
||||
EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
|
||||
for (int i = 0; i < packetSize; ++i) {
|
||||
values[i] = coeff(index+i);
|
||||
}
|
||||
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
||||
return rslt;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
|
||||
|
||||
protected:
|
||||
Dimensions m_dimensions;
|
||||
array<Index, NumDims> m_outputStrides;
|
||||
array<Index, NumDims> m_inputStrides;
|
||||
TensorEvaluator<ArgType, Device> m_impl;
|
||||
const Strides m_strides;
|
||||
array<internal::TensorIntDivisor<Index>, NumDims> m_fastStrides;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
|
@ -121,6 +121,7 @@ if(EIGEN_TEST_CXX11)
|
||||
ei_add_test(cxx11_tensor_broadcasting "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_chipping "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_concatenation "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_inflation "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_morphing "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_padding "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_patch "-std=c++0x")
|
||||
|
81
unsupported/test/cxx11_tensor_inflation.cpp
Normal file
81
unsupported/test/cxx11_tensor_inflation.cpp
Normal file
@ -0,0 +1,81 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2015 Ke Yang <yangke@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
#include <Eigen/CXX11/Tensor>
|
||||
|
||||
using Eigen::Tensor;
|
||||
|
||||
template<int DataLayout>
|
||||
static void test_simple_inflation()
|
||||
{
|
||||
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
||||
tensor.setRandom();
|
||||
array<ptrdiff_t, 4> strides;
|
||||
|
||||
strides[0] = 1;
|
||||
strides[1] = 1;
|
||||
strides[2] = 1;
|
||||
strides[3] = 1;
|
||||
|
||||
Tensor<float, 4, DataLayout> no_stride;
|
||||
no_stride = tensor.inflate(strides);
|
||||
|
||||
VERIFY_IS_EQUAL(no_stride.dimension(0), 2);
|
||||
VERIFY_IS_EQUAL(no_stride.dimension(1), 3);
|
||||
VERIFY_IS_EQUAL(no_stride.dimension(2), 5);
|
||||
VERIFY_IS_EQUAL(no_stride.dimension(3), 7);
|
||||
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
for (int k = 0; k < 5; ++k) {
|
||||
for (int l = 0; l < 7; ++l) {
|
||||
VERIFY_IS_EQUAL(tensor(i,j,k,l), no_stride(i,j,k,l));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
strides[0] = 2;
|
||||
strides[1] = 4;
|
||||
strides[2] = 2;
|
||||
strides[3] = 3;
|
||||
Tensor<float, 4, DataLayout> inflated;
|
||||
inflated = tensor.inflate(strides);
|
||||
|
||||
VERIFY_IS_EQUAL(inflated.dimension(0), 3);
|
||||
VERIFY_IS_EQUAL(inflated.dimension(1), 9);
|
||||
VERIFY_IS_EQUAL(inflated.dimension(2), 9);
|
||||
VERIFY_IS_EQUAL(inflated.dimension(3), 19);
|
||||
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
for (int j = 0; j < 9; ++j) {
|
||||
for (int k = 0; k < 9; ++k) {
|
||||
for (int l = 0; l < 19; ++l) {
|
||||
if (i % 2 == 0 &&
|
||||
j % 4 == 0 &&
|
||||
k % 2 == 0 &&
|
||||
l % 3 == 0) {
|
||||
VERIFY_IS_EQUAL(inflated(i,j,k,l),
|
||||
tensor(i/2, j/4, k/2, l/3));
|
||||
} else {
|
||||
VERIFY_IS_EQUAL(0, inflated(i,j,k,l));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void test_cxx11_tensor_inflation()
|
||||
{
|
||||
CALL_SUBTEST(test_simple_inflation<ColMajor>());
|
||||
CALL_SUBTEST(test_simple_inflation<RowMajor>());
|
||||
}
|
Loading…
Reference in New Issue
Block a user