Add a CG-based solver for rectangular least-square problems (bug #975).

This commit is contained in:
Gael Guennebaud 2015-03-04 09:34:27 +01:00
parent f839099512
commit 05274219a7
7 changed files with 392 additions and 33 deletions

View File

@ -12,24 +12,26 @@
* This module currently provides iterative methods to solve problems of the form \c A \c x = \c b, where \c A is a squared matrix, usually very large and sparse.
* Those solvers are accessible via the following classes:
* - ConjugateGradient for selfadjoint (hermitian) matrices,
* - LSCG for rectangular least-square problems,
* - BiCGSTAB for general square matrices.
*
* These iterative solvers are associated with some preconditioners:
* - IdentityPreconditioner - not really useful
* - DiagonalPreconditioner - also called JAcobi preconditioner, work very well on diagonal dominant matrices.
* - IncompleteILUT - incomplete LU factorization with dual thresholding
* - IncompleteLUT - incomplete LU factorization with dual thresholding
*
* Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport.
*
* \code
* #include <Eigen/IterativeLinearSolvers>
* \endcode
\code
#include <Eigen/IterativeLinearSolvers>
\endcode
*/
#include "src/IterativeLinearSolvers/SolveWithGuess.h"
#include "src/IterativeLinearSolvers/IterativeSolverBase.h"
#include "src/IterativeLinearSolvers/BasicPreconditioners.h"
#include "src/IterativeLinearSolvers/ConjugateGradient.h"
#include "src/IterativeLinearSolvers/LeastSquareConjugateGradient.h"
#include "src/IterativeLinearSolvers/BiCGSTAB.h"
#include "src/IterativeLinearSolvers/IncompleteLUT.h"

View File

@ -17,9 +17,9 @@ namespace Eigen {
*
* This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
* In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
* \code
* A.diagonal().asDiagonal() . x = b
* \endcode
\code
A.diagonal().asDiagonal() . x = b
\endcode
*
* \tparam _Scalar the type of the scalar.
*
@ -28,6 +28,7 @@ namespace Eigen {
*
* \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
*
* \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient
*/
template <typename _Scalar>
class DiagonalPreconditioner
@ -100,6 +101,69 @@ class DiagonalPreconditioner
bool m_isInitialized;
};
/** \ingroup IterativeLinearSolvers_Module
* \brief Jacobi preconditioner for LSCG
*
* This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix.
* In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
\code
(A.adjoint() * A).diagonal().asDiagonal() * x = b
\endcode
*
* \tparam _Scalar the type of the scalar.
*
* The diagonal entries are pre-inverted and stored into a dense vector.
*
* \sa class LSCG, class DiagonalPreconditioner
*/
template <typename _Scalar>
class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar>
{
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DiagonalPreconditioner<_Scalar> Base;
using Base::m_invdiag;
public:
LeastSquareDiagonalPreconditioner() : Base() {}
template<typename MatType>
explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base()
{
compute(mat);
}
template<typename MatType>
LeastSquareDiagonalPreconditioner& analyzePattern(const MatType& )
{
return *this;
}
template<typename MatType>
LeastSquareDiagonalPreconditioner& factorize(const MatType& mat)
{
// Compute the inverse squared-norm of each column of mat
m_invdiag.resize(mat.cols());
for(Index j=0; j<mat.outerSize(); ++j)
{
RealScalar sum = mat.innerVector(j).squaredNorm();
if(sum>0)
m_invdiag(j) = RealScalar(1)/sum;
else
m_invdiag(j) = RealScalar(1);
}
Base::m_isInitialized = true;
return *this;
}
template<typename MatType>
LeastSquareDiagonalPreconditioner& compute(const MatType& mat)
{
return factorize(mat);
}
protected:
};
/** \ingroup IterativeLinearSolvers_Module
* \brief A naive preconditioner which approximates any matrix as the identity matrix

View File

@ -60,29 +60,29 @@ void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
}
VectorType p(n);
p = precond.solve(residual); //initial search direction
p = precond.solve(residual); // initial search direction
VectorType z(n), tmp(n);
RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
Index i = 0;
while(i < maxIters)
{
tmp.noalias() = mat * p; // the bottleneck of the algorithm
tmp.noalias() = mat * p; // the bottleneck of the algorithm
Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
x += alpha * p; // update solution
residual -= alpha * tmp; // update residue
Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
x += alpha * p; // update solution
residual -= alpha * tmp; // update residual
residualNorm2 = residual.squaredNorm();
if(residualNorm2 < threshold)
break;
z = precond.solve(residual); // approximately solve for "A z = residual"
z = precond.solve(residual); // approximately solve for "A z = residual"
RealScalar absOld = absNew;
absNew = numext::real(residual.dot(z)); // update the absolute value of r
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
p = z + beta * p; // update search direction
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
p = z + beta * p; // update search direction
i++;
}
tol_error = sqrt(residualNorm2 / rhsNorm2);
@ -122,24 +122,24 @@ struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
* and NumTraits<Scalar>::epsilon() for the tolerance.
*
* This class can be used as the direct solver classes. Here is a typical usage example:
* \code
* int n = 10000;
* VectorXd x(n), b(n);
* SparseMatrix<double> A(n,n);
* // fill A and b
* ConjugateGradient<SparseMatrix<double> > cg;
* cg.compute(A);
* x = cg.solve(b);
* std::cout << "#iterations: " << cg.iterations() << std::endl;
* std::cout << "estimated error: " << cg.error() << std::endl;
* // update b, and solve again
* x = cg.solve(b);
* \endcode
\code
int n = 10000;
VectorXd x(n), b(n);
SparseMatrix<double> A(n,n);
// fill A and b
ConjugateGradient<SparseMatrix<double> > cg;
cg.compute(A);
x = cg.solve(b);
std::cout << "#iterations: " << cg.iterations() << std::endl;
std::cout << "estimated error: " << cg.error() << std::endl;
// update b, and solve again
x = cg.solve(b);
\endcode
*
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
* \sa class LSCG, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >

View File

@ -0,0 +1,213 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
#define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
namespace Eigen {
namespace internal {
/** \internal Low-level conjugate gradient algorithm for least-square problems
* \param mat The matrix A
* \param rhs The right hand side vector b
* \param x On input and initial solution, on output the computed solution.
* \param precond A preconditioner being able to efficiently solve for an
* approximation of A'Ax=b (regardless of b)
* \param iters On input the max number of iteration, on output the number of performed iterations.
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
*/
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
EIGEN_DONT_INLINE
void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
const Preconditioner& precond, Index& iters,
typename Dest::RealScalar& tol_error)
{
using std::sqrt;
using std::abs;
typedef typename Dest::RealScalar RealScalar;
typedef typename Dest::Scalar Scalar;
typedef Matrix<Scalar,Dynamic,1> VectorType;
RealScalar tol = tol_error;
Index maxIters = iters;
Index m = mat.rows(), n = mat.cols();
VectorType residual = rhs - mat * x;
VectorType normal_residual = mat.adjoint() * residual;
RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm();
if(rhsNorm2 == 0)
{
x.setZero();
iters = 0;
tol_error = 0;
return;
}
RealScalar threshold = tol*tol*rhsNorm2;
RealScalar residualNorm2 = normal_residual.squaredNorm();
if (residualNorm2 < threshold)
{
iters = 0;
tol_error = sqrt(residualNorm2 / rhsNorm2);
return;
}
VectorType p(n);
p = precond.solve(normal_residual); // initial search direction
VectorType z(n), tmp(m);
RealScalar absNew = numext::real(normal_residual.dot(p)); // the square of the absolute value of r scaled by invM
Index i = 0;
while(i < maxIters)
{
tmp.noalias() = mat * p;
Scalar alpha = absNew / tmp.squaredNorm(); // the amount we travel on dir
x += alpha * p; // update solution
residual -= alpha * tmp; // update residual
normal_residual = mat.adjoint() * residual; // update residual of the normal equation
residualNorm2 = normal_residual.squaredNorm();
if(residualNorm2 < threshold)
break;
z = precond.solve(normal_residual); // approximately solve for "A'A z = normal_residual"
RealScalar absOld = absNew;
absNew = numext::real(normal_residual.dot(z)); // update the absolute value of r
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
p = z + beta * p; // update search direction
i++;
}
tol_error = sqrt(residualNorm2 / rhsNorm2);
iters = i;
}
}
template< typename _MatrixType,
typename _Preconditioner = LeastSquareDiagonalPreconditioner<typename _MatrixType::Scalar> >
class LSCG;
namespace internal {
template< typename _MatrixType, typename _Preconditioner>
struct traits<LSCG<_MatrixType,_Preconditioner> >
{
typedef _MatrixType MatrixType;
typedef _Preconditioner Preconditioner;
};
}
/** \ingroup IterativeLinearSolvers_Module
* \brief A conjugate gradient solver for sparse (or dense) least-square problems
*
* This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm.
* The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability.
* Otherwise, the SparseLU or SparseQR classes might be preferable.
* The matrix A and the vectors x and b can be either dense or sparse.
*
* \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
* \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner
*
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
* and NumTraits<Scalar>::epsilon() for the tolerance.
*
* This class can be used as the direct solver classes. Here is a typical usage example:
\code
int m=1000000, n = 10000;
VectorXd x(n), b(m);
SparseMatrix<double> A(m,n);
// fill A and b
LSCG<SparseMatrix<double> > lscg;
lscg.compute(A);
x = lscg.solve(b);
std::cout << "#iterations: " << lscg.iterations() << std::endl;
std::cout << "estimated error: " << lscg.error() << std::endl;
// update b, and solve again
x = lscg.solve(b);
\endcode
*
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
* \sa class ConjugateGradient, SparseLU, SparseQR
*/
template< typename _MatrixType, typename _Preconditioner>
class LSCG : public IterativeSolverBase<LSCG<_MatrixType,_Preconditioner> >
{
typedef IterativeSolverBase<LSCG> Base;
using Base::mp_matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
public:
/** Default constructor. */
LSCG() : Base() {}
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
*
* This constructor is a shortcut for the default constructor followed
* by a call to compute().
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
explicit LSCG(const MatrixType& A) : Base(A) {}
~LSCG() {}
/** \internal */
template<typename Rhs,typename Dest>
void _solve_with_guess_impl(const Rhs& b, Dest& x) const
{
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
for(Index j=0; j<b.cols(); ++j)
{
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x,j);
internal::least_square_conjugate_gradient(mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
}
m_isInitialized = true;
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
}
/** \internal */
using Base::_solve_impl;
template<typename Rhs,typename Dest>
void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
{
x.setZero();
_solve_with_guess_impl(b.derived(),x);
}
};
} // end namespace Eigen
#endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H

View File

@ -234,6 +234,7 @@ ei_add_test(sparse_permutations)
ei_add_test(simplicial_cholesky)
ei_add_test(conjugate_gradient)
ei_add_test(bicgstab)
ei_add_test(lscg)
ei_add_test(sparselu)
ei_add_test(sparseqr)
ei_add_test(umeyama)

29
test/lscg.cpp Normal file
View File

@ -0,0 +1,29 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "sparse_solver.h"
#include <Eigen/IterativeLinearSolvers>
template<typename T> void test_lscg_T()
{
LSCG<SparseMatrix<T> > lscg_colmajor_diag;
LSCG<SparseMatrix<T>, IdentityPreconditioner> lscg_colmajor_I;
CALL_SUBTEST( check_sparse_square_solving(lscg_colmajor_diag) );
CALL_SUBTEST( check_sparse_square_solving(lscg_colmajor_I) );
CALL_SUBTEST( check_sparse_leastsquare_solving(lscg_colmajor_diag) );
CALL_SUBTEST( check_sparse_leastsquare_solving(lscg_colmajor_I) );
}
void test_lscg()
{
CALL_SUBTEST_1(test_lscg_T<double>());
CALL_SUBTEST_2(test_lscg_T<std::complex<double> >());
}

View File

@ -17,9 +17,9 @@ void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A,
typedef typename Mat::Scalar Scalar;
typedef typename Mat::StorageIndex StorageIndex;
DenseRhs refX = dA.lu().solve(db);
DenseRhs refX = dA.householderQr().solve(db);
{
Rhs x(b.rows(), b.cols());
Rhs x(A.cols(), b.cols());
Rhs oldb = b;
solver.compute(A);
@ -94,7 +94,7 @@ void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A,
// test dense Block as the result and rhs:
{
DenseRhs x(db.rows(), db.cols());
DenseRhs x(refX.rows(), refX.cols());
DenseRhs oldb(db);
x.setZero();
x.block(0,0,x.rows(),x.cols()) = solver.solve(db.block(0,0,db.rows(),db.cols()));
@ -119,7 +119,7 @@ void check_sparse_solving_real_cases(Solver& solver, const typename Solver::Matr
typedef typename Mat::Scalar Scalar;
typedef typename Mat::RealScalar RealScalar;
Rhs x(b.rows(), b.cols());
Rhs x(A.cols(), b.cols());
solver.compute(A);
if (solver.info() != Success)
@ -410,3 +410,53 @@ template<typename Solver> void check_sparse_square_abs_determinant(Solver& solve
}
}
template<typename Solver, typename DenseMat>
void generate_sparse_leastsquare_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300, int options = ForceNonZeroDiag)
{
typedef typename Solver::MatrixType Mat;
typedef typename Mat::Scalar Scalar;
int rows = internal::random<int>(1,maxSize);
int cols = internal::random<int>(1,rows);
double density = (std::max)(8./(rows*cols), 0.01);
A.resize(rows,cols);
dA.resize(rows,cols);
initSparse<Scalar>(density, dA, A, options);
}
template<typename Solver> void check_sparse_leastsquare_solving(Solver& solver)
{
typedef typename Solver::MatrixType Mat;
typedef typename Mat::Scalar Scalar;
typedef SparseMatrix<Scalar,ColMajor> SpMat;
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
int rhsCols = internal::random<int>(1,16);
Mat A;
DenseMatrix dA;
for (int i = 0; i < g_repeat; i++) {
generate_sparse_leastsquare_problem(solver, A, dA);
A.makeCompressed();
DenseVector b = DenseVector::Random(A.rows());
DenseMatrix dB(A.rows(),rhsCols);
SpMat B(A.rows(),rhsCols);
double density = (std::max)(8./(A.rows()*rhsCols), 0.1);
initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
B.makeCompressed();
check_sparse_solving(solver, A, b, dA, b);
check_sparse_solving(solver, A, dB, dA, dB);
check_sparse_solving(solver, A, B, dA, dB);
// check only once
if(i==0)
{
b = DenseVector::Zero(A.rows());
check_sparse_solving(solver, A, b, dA, b);
}
}
}