mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-02-23 18:20:47 +08:00
Add a CG-based solver for rectangular least-square problems (bug #975).
This commit is contained in:
parent
f839099512
commit
05274219a7
@ -12,24 +12,26 @@
|
||||
* This module currently provides iterative methods to solve problems of the form \c A \c x = \c b, where \c A is a squared matrix, usually very large and sparse.
|
||||
* Those solvers are accessible via the following classes:
|
||||
* - ConjugateGradient for selfadjoint (hermitian) matrices,
|
||||
* - LSCG for rectangular least-square problems,
|
||||
* - BiCGSTAB for general square matrices.
|
||||
*
|
||||
* These iterative solvers are associated with some preconditioners:
|
||||
* - IdentityPreconditioner - not really useful
|
||||
* - DiagonalPreconditioner - also called JAcobi preconditioner, work very well on diagonal dominant matrices.
|
||||
* - IncompleteILUT - incomplete LU factorization with dual thresholding
|
||||
* - IncompleteLUT - incomplete LU factorization with dual thresholding
|
||||
*
|
||||
* Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport.
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/IterativeLinearSolvers>
|
||||
* \endcode
|
||||
\code
|
||||
#include <Eigen/IterativeLinearSolvers>
|
||||
\endcode
|
||||
*/
|
||||
|
||||
#include "src/IterativeLinearSolvers/SolveWithGuess.h"
|
||||
#include "src/IterativeLinearSolvers/IterativeSolverBase.h"
|
||||
#include "src/IterativeLinearSolvers/BasicPreconditioners.h"
|
||||
#include "src/IterativeLinearSolvers/ConjugateGradient.h"
|
||||
#include "src/IterativeLinearSolvers/LeastSquareConjugateGradient.h"
|
||||
#include "src/IterativeLinearSolvers/BiCGSTAB.h"
|
||||
#include "src/IterativeLinearSolvers/IncompleteLUT.h"
|
||||
|
||||
|
@ -17,9 +17,9 @@ namespace Eigen {
|
||||
*
|
||||
* This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
|
||||
* In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
|
||||
* \code
|
||||
* A.diagonal().asDiagonal() . x = b
|
||||
* \endcode
|
||||
\code
|
||||
A.diagonal().asDiagonal() . x = b
|
||||
\endcode
|
||||
*
|
||||
* \tparam _Scalar the type of the scalar.
|
||||
*
|
||||
@ -28,6 +28,7 @@ namespace Eigen {
|
||||
*
|
||||
* \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
|
||||
*
|
||||
* \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient
|
||||
*/
|
||||
template <typename _Scalar>
|
||||
class DiagonalPreconditioner
|
||||
@ -100,6 +101,69 @@ class DiagonalPreconditioner
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief Jacobi preconditioner for LSCG
|
||||
*
|
||||
* This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix.
|
||||
* In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
|
||||
\code
|
||||
(A.adjoint() * A).diagonal().asDiagonal() * x = b
|
||||
\endcode
|
||||
*
|
||||
* \tparam _Scalar the type of the scalar.
|
||||
*
|
||||
* The diagonal entries are pre-inverted and stored into a dense vector.
|
||||
*
|
||||
* \sa class LSCG, class DiagonalPreconditioner
|
||||
*/
|
||||
template <typename _Scalar>
|
||||
class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar>
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef DiagonalPreconditioner<_Scalar> Base;
|
||||
using Base::m_invdiag;
|
||||
public:
|
||||
|
||||
LeastSquareDiagonalPreconditioner() : Base() {}
|
||||
|
||||
template<typename MatType>
|
||||
explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base()
|
||||
{
|
||||
compute(mat);
|
||||
}
|
||||
|
||||
template<typename MatType>
|
||||
LeastSquareDiagonalPreconditioner& analyzePattern(const MatType& )
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatType>
|
||||
LeastSquareDiagonalPreconditioner& factorize(const MatType& mat)
|
||||
{
|
||||
// Compute the inverse squared-norm of each column of mat
|
||||
m_invdiag.resize(mat.cols());
|
||||
for(Index j=0; j<mat.outerSize(); ++j)
|
||||
{
|
||||
RealScalar sum = mat.innerVector(j).squaredNorm();
|
||||
if(sum>0)
|
||||
m_invdiag(j) = RealScalar(1)/sum;
|
||||
else
|
||||
m_invdiag(j) = RealScalar(1);
|
||||
}
|
||||
Base::m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatType>
|
||||
LeastSquareDiagonalPreconditioner& compute(const MatType& mat)
|
||||
{
|
||||
return factorize(mat);
|
||||
}
|
||||
|
||||
protected:
|
||||
};
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief A naive preconditioner which approximates any matrix as the identity matrix
|
||||
|
@ -60,29 +60,29 @@ void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||
}
|
||||
|
||||
VectorType p(n);
|
||||
p = precond.solve(residual); //initial search direction
|
||||
p = precond.solve(residual); // initial search direction
|
||||
|
||||
VectorType z(n), tmp(n);
|
||||
RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
|
||||
Index i = 0;
|
||||
while(i < maxIters)
|
||||
{
|
||||
tmp.noalias() = mat * p; // the bottleneck of the algorithm
|
||||
tmp.noalias() = mat * p; // the bottleneck of the algorithm
|
||||
|
||||
Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
|
||||
x += alpha * p; // update solution
|
||||
residual -= alpha * tmp; // update residue
|
||||
Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
|
||||
x += alpha * p; // update solution
|
||||
residual -= alpha * tmp; // update residual
|
||||
|
||||
residualNorm2 = residual.squaredNorm();
|
||||
if(residualNorm2 < threshold)
|
||||
break;
|
||||
|
||||
z = precond.solve(residual); // approximately solve for "A z = residual"
|
||||
z = precond.solve(residual); // approximately solve for "A z = residual"
|
||||
|
||||
RealScalar absOld = absNew;
|
||||
absNew = numext::real(residual.dot(z)); // update the absolute value of r
|
||||
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
|
||||
p = z + beta * p; // update search direction
|
||||
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
|
||||
p = z + beta * p; // update search direction
|
||||
i++;
|
||||
}
|
||||
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
||||
@ -122,24 +122,24 @@ struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
|
||||
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
||||
*
|
||||
* This class can be used as the direct solver classes. Here is a typical usage example:
|
||||
* \code
|
||||
* int n = 10000;
|
||||
* VectorXd x(n), b(n);
|
||||
* SparseMatrix<double> A(n,n);
|
||||
* // fill A and b
|
||||
* ConjugateGradient<SparseMatrix<double> > cg;
|
||||
* cg.compute(A);
|
||||
* x = cg.solve(b);
|
||||
* std::cout << "#iterations: " << cg.iterations() << std::endl;
|
||||
* std::cout << "estimated error: " << cg.error() << std::endl;
|
||||
* // update b, and solve again
|
||||
* x = cg.solve(b);
|
||||
* \endcode
|
||||
\code
|
||||
int n = 10000;
|
||||
VectorXd x(n), b(n);
|
||||
SparseMatrix<double> A(n,n);
|
||||
// fill A and b
|
||||
ConjugateGradient<SparseMatrix<double> > cg;
|
||||
cg.compute(A);
|
||||
x = cg.solve(b);
|
||||
std::cout << "#iterations: " << cg.iterations() << std::endl;
|
||||
std::cout << "estimated error: " << cg.error() << std::endl;
|
||||
// update b, and solve again
|
||||
x = cg.solve(b);
|
||||
\endcode
|
||||
*
|
||||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||
* One can control the start using the solveWithGuess() method.
|
||||
*
|
||||
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||
* \sa class LSCG, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||
*/
|
||||
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
||||
class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
|
||||
|
213
Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h
Normal file
213
Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h
Normal file
@ -0,0 +1,213 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
|
||||
#define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal Low-level conjugate gradient algorithm for least-square problems
|
||||
* \param mat The matrix A
|
||||
* \param rhs The right hand side vector b
|
||||
* \param x On input and initial solution, on output the computed solution.
|
||||
* \param precond A preconditioner being able to efficiently solve for an
|
||||
* approximation of A'Ax=b (regardless of b)
|
||||
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
||||
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
||||
*/
|
||||
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
||||
EIGEN_DONT_INLINE
|
||||
void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||
const Preconditioner& precond, Index& iters,
|
||||
typename Dest::RealScalar& tol_error)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
typedef typename Dest::RealScalar RealScalar;
|
||||
typedef typename Dest::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
|
||||
RealScalar tol = tol_error;
|
||||
Index maxIters = iters;
|
||||
|
||||
Index m = mat.rows(), n = mat.cols();
|
||||
|
||||
VectorType residual = rhs - mat * x;
|
||||
VectorType normal_residual = mat.adjoint() * residual;
|
||||
|
||||
RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm();
|
||||
if(rhsNorm2 == 0)
|
||||
{
|
||||
x.setZero();
|
||||
iters = 0;
|
||||
tol_error = 0;
|
||||
return;
|
||||
}
|
||||
RealScalar threshold = tol*tol*rhsNorm2;
|
||||
RealScalar residualNorm2 = normal_residual.squaredNorm();
|
||||
if (residualNorm2 < threshold)
|
||||
{
|
||||
iters = 0;
|
||||
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
||||
return;
|
||||
}
|
||||
|
||||
VectorType p(n);
|
||||
p = precond.solve(normal_residual); // initial search direction
|
||||
|
||||
VectorType z(n), tmp(m);
|
||||
RealScalar absNew = numext::real(normal_residual.dot(p)); // the square of the absolute value of r scaled by invM
|
||||
Index i = 0;
|
||||
while(i < maxIters)
|
||||
{
|
||||
tmp.noalias() = mat * p;
|
||||
|
||||
Scalar alpha = absNew / tmp.squaredNorm(); // the amount we travel on dir
|
||||
x += alpha * p; // update solution
|
||||
residual -= alpha * tmp; // update residual
|
||||
normal_residual = mat.adjoint() * residual; // update residual of the normal equation
|
||||
|
||||
residualNorm2 = normal_residual.squaredNorm();
|
||||
if(residualNorm2 < threshold)
|
||||
break;
|
||||
|
||||
z = precond.solve(normal_residual); // approximately solve for "A'A z = normal_residual"
|
||||
|
||||
RealScalar absOld = absNew;
|
||||
absNew = numext::real(normal_residual.dot(z)); // update the absolute value of r
|
||||
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
|
||||
p = z + beta * p; // update search direction
|
||||
i++;
|
||||
}
|
||||
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
||||
iters = i;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template< typename _MatrixType,
|
||||
typename _Preconditioner = LeastSquareDiagonalPreconditioner<typename _MatrixType::Scalar> >
|
||||
class LSCG;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template< typename _MatrixType, typename _Preconditioner>
|
||||
struct traits<LSCG<_MatrixType,_Preconditioner> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief A conjugate gradient solver for sparse (or dense) least-square problems
|
||||
*
|
||||
* This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm.
|
||||
* The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability.
|
||||
* Otherwise, the SparseLU or SparseQR classes might be preferable.
|
||||
* The matrix A and the vectors x and b can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
|
||||
* \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner
|
||||
*
|
||||
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
||||
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
|
||||
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
||||
*
|
||||
* This class can be used as the direct solver classes. Here is a typical usage example:
|
||||
\code
|
||||
int m=1000000, n = 10000;
|
||||
VectorXd x(n), b(m);
|
||||
SparseMatrix<double> A(m,n);
|
||||
// fill A and b
|
||||
LSCG<SparseMatrix<double> > lscg;
|
||||
lscg.compute(A);
|
||||
x = lscg.solve(b);
|
||||
std::cout << "#iterations: " << lscg.iterations() << std::endl;
|
||||
std::cout << "estimated error: " << lscg.error() << std::endl;
|
||||
// update b, and solve again
|
||||
x = lscg.solve(b);
|
||||
\endcode
|
||||
*
|
||||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||
* One can control the start using the solveWithGuess() method.
|
||||
*
|
||||
* \sa class ConjugateGradient, SparseLU, SparseQR
|
||||
*/
|
||||
template< typename _MatrixType, typename _Preconditioner>
|
||||
class LSCG : public IterativeSolverBase<LSCG<_MatrixType,_Preconditioner> >
|
||||
{
|
||||
typedef IterativeSolverBase<LSCG> Base;
|
||||
using Base::mp_matrix;
|
||||
using Base::m_error;
|
||||
using Base::m_iterations;
|
||||
using Base::m_info;
|
||||
using Base::m_isInitialized;
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
|
||||
public:
|
||||
|
||||
/** Default constructor. */
|
||||
LSCG() : Base() {}
|
||||
|
||||
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
||||
*
|
||||
* This constructor is a shortcut for the default constructor followed
|
||||
* by a call to compute().
|
||||
*
|
||||
* \warning this class stores a reference to the matrix A as well as some
|
||||
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
explicit LSCG(const MatrixType& A) : Base(A) {}
|
||||
|
||||
~LSCG() {}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve_with_guess_impl(const Rhs& b, Dest& x) const
|
||||
{
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
for(Index j=0; j<b.cols(); ++j)
|
||||
{
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
typename Dest::ColXpr xj(x,j);
|
||||
internal::least_square_conjugate_gradient(mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
|
||||
}
|
||||
|
||||
m_isInitialized = true;
|
||||
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
using Base::_solve_impl;
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
|
||||
{
|
||||
x.setZero();
|
||||
_solve_with_guess_impl(b.derived(),x);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
|
@ -234,6 +234,7 @@ ei_add_test(sparse_permutations)
|
||||
ei_add_test(simplicial_cholesky)
|
||||
ei_add_test(conjugate_gradient)
|
||||
ei_add_test(bicgstab)
|
||||
ei_add_test(lscg)
|
||||
ei_add_test(sparselu)
|
||||
ei_add_test(sparseqr)
|
||||
ei_add_test(umeyama)
|
||||
|
29
test/lscg.cpp
Normal file
29
test/lscg.cpp
Normal file
@ -0,0 +1,29 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "sparse_solver.h"
|
||||
#include <Eigen/IterativeLinearSolvers>
|
||||
|
||||
template<typename T> void test_lscg_T()
|
||||
{
|
||||
LSCG<SparseMatrix<T> > lscg_colmajor_diag;
|
||||
LSCG<SparseMatrix<T>, IdentityPreconditioner> lscg_colmajor_I;
|
||||
|
||||
CALL_SUBTEST( check_sparse_square_solving(lscg_colmajor_diag) );
|
||||
CALL_SUBTEST( check_sparse_square_solving(lscg_colmajor_I) );
|
||||
|
||||
CALL_SUBTEST( check_sparse_leastsquare_solving(lscg_colmajor_diag) );
|
||||
CALL_SUBTEST( check_sparse_leastsquare_solving(lscg_colmajor_I) );
|
||||
}
|
||||
|
||||
void test_lscg()
|
||||
{
|
||||
CALL_SUBTEST_1(test_lscg_T<double>());
|
||||
CALL_SUBTEST_2(test_lscg_T<std::complex<double> >());
|
||||
}
|
@ -17,9 +17,9 @@ void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A,
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef typename Mat::StorageIndex StorageIndex;
|
||||
|
||||
DenseRhs refX = dA.lu().solve(db);
|
||||
DenseRhs refX = dA.householderQr().solve(db);
|
||||
{
|
||||
Rhs x(b.rows(), b.cols());
|
||||
Rhs x(A.cols(), b.cols());
|
||||
Rhs oldb = b;
|
||||
|
||||
solver.compute(A);
|
||||
@ -94,7 +94,7 @@ void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A,
|
||||
|
||||
// test dense Block as the result and rhs:
|
||||
{
|
||||
DenseRhs x(db.rows(), db.cols());
|
||||
DenseRhs x(refX.rows(), refX.cols());
|
||||
DenseRhs oldb(db);
|
||||
x.setZero();
|
||||
x.block(0,0,x.rows(),x.cols()) = solver.solve(db.block(0,0,db.rows(),db.cols()));
|
||||
@ -119,7 +119,7 @@ void check_sparse_solving_real_cases(Solver& solver, const typename Solver::Matr
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef typename Mat::RealScalar RealScalar;
|
||||
|
||||
Rhs x(b.rows(), b.cols());
|
||||
Rhs x(A.cols(), b.cols());
|
||||
|
||||
solver.compute(A);
|
||||
if (solver.info() != Success)
|
||||
@ -410,3 +410,53 @@ template<typename Solver> void check_sparse_square_abs_determinant(Solver& solve
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Solver, typename DenseMat>
|
||||
void generate_sparse_leastsquare_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300, int options = ForceNonZeroDiag)
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
|
||||
int rows = internal::random<int>(1,maxSize);
|
||||
int cols = internal::random<int>(1,rows);
|
||||
double density = (std::max)(8./(rows*cols), 0.01);
|
||||
|
||||
A.resize(rows,cols);
|
||||
dA.resize(rows,cols);
|
||||
|
||||
initSparse<Scalar>(density, dA, A, options);
|
||||
}
|
||||
|
||||
template<typename Solver> void check_sparse_leastsquare_solving(Solver& solver)
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef SparseMatrix<Scalar,ColMajor> SpMat;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
|
||||
int rhsCols = internal::random<int>(1,16);
|
||||
|
||||
Mat A;
|
||||
DenseMatrix dA;
|
||||
for (int i = 0; i < g_repeat; i++) {
|
||||
generate_sparse_leastsquare_problem(solver, A, dA);
|
||||
|
||||
A.makeCompressed();
|
||||
DenseVector b = DenseVector::Random(A.rows());
|
||||
DenseMatrix dB(A.rows(),rhsCols);
|
||||
SpMat B(A.rows(),rhsCols);
|
||||
double density = (std::max)(8./(A.rows()*rhsCols), 0.1);
|
||||
initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
|
||||
B.makeCompressed();
|
||||
check_sparse_solving(solver, A, b, dA, b);
|
||||
check_sparse_solving(solver, A, dB, dA, dB);
|
||||
check_sparse_solving(solver, A, B, dA, dB);
|
||||
|
||||
// check only once
|
||||
if(i==0)
|
||||
{
|
||||
b = DenseVector::Zero(A.rows());
|
||||
check_sparse_solving(solver, A, b, dA, b);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user