mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-30 17:40:05 +08:00
Merged in rmlarsen/eigen2 (pull request PR-232)
Improve performance of parallelized matrix multiply for rectangular matrices
This commit is contained in:
commit
050c681bdd
@ -10,7 +10,7 @@
|
||||
#ifndef EIGEN_GENERAL_MATRIX_MATRIX_H
|
||||
#define EIGEN_GENERAL_MATRIX_MATRIX_H
|
||||
|
||||
namespace Eigen {
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
@ -24,7 +24,7 @@ template<
|
||||
struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor>
|
||||
{
|
||||
typedef gebp_traits<RhsScalar,LhsScalar> Traits;
|
||||
|
||||
|
||||
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
|
||||
static EIGEN_STRONG_INLINE void run(
|
||||
Index rows, Index cols, Index depth,
|
||||
@ -54,7 +54,7 @@ struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLh
|
||||
{
|
||||
|
||||
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
|
||||
|
||||
|
||||
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
|
||||
static void run(Index rows, Index cols, Index depth,
|
||||
const LhsScalar* _lhs, Index lhsStride,
|
||||
@ -85,13 +85,13 @@ static void run(Index rows, Index cols, Index depth,
|
||||
// this is the parallel version!
|
||||
Index tid = omp_get_thread_num();
|
||||
Index threads = omp_get_num_threads();
|
||||
|
||||
|
||||
LhsScalar* blockA = blocking.blockA();
|
||||
eigen_internal_assert(blockA!=0);
|
||||
|
||||
|
||||
std::size_t sizeB = kc*nc;
|
||||
ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, 0);
|
||||
|
||||
|
||||
// For each horizontal panel of the rhs, and corresponding vertical panel of the lhs...
|
||||
for(Index k=0; k<depth; k+=kc)
|
||||
{
|
||||
@ -114,7 +114,7 @@ static void run(Index rows, Index cols, Index depth,
|
||||
|
||||
// Notify the other threads that the part A'_i is ready to go.
|
||||
info[tid].sync = k;
|
||||
|
||||
|
||||
// Computes C_i += A' * B' per A'_i
|
||||
for(Index shift=0; shift<threads; ++shift)
|
||||
{
|
||||
@ -161,7 +161,7 @@ static void run(Index rows, Index cols, Index depth,
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
|
||||
ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
|
||||
|
||||
|
||||
const bool pack_rhs_once = mc!=rows && kc==depth && nc==cols;
|
||||
|
||||
// For each horizontal panel of the rhs, and corresponding panel of the lhs...
|
||||
@ -172,24 +172,24 @@ static void run(Index rows, Index cols, Index depth,
|
||||
for(Index k2=0; k2<depth; k2+=kc)
|
||||
{
|
||||
const Index actual_kc = (std::min)(k2+kc,depth)-k2;
|
||||
|
||||
|
||||
// OK, here we have selected one horizontal panel of rhs and one vertical panel of lhs.
|
||||
// => Pack lhs's panel into a sequential chunk of memory (L2/L3 caching)
|
||||
// Note that this panel will be read as many times as the number of blocks in the rhs's
|
||||
// horizontal panel which is, in practice, a very low number.
|
||||
pack_lhs(blockA, lhs.getSubMapper(i2,k2), actual_kc, actual_mc);
|
||||
|
||||
|
||||
// For each kc x nc block of the rhs's horizontal panel...
|
||||
for(Index j2=0; j2<cols; j2+=nc)
|
||||
{
|
||||
const Index actual_nc = (std::min)(j2+nc,cols)-j2;
|
||||
|
||||
|
||||
// We pack the rhs's block into a sequential chunk of memory (L2 caching)
|
||||
// Note that this block will be read a very high number of times, which is equal to the number of
|
||||
// micro horizontal panel of the large rhs's panel (e.g., rows/12 times).
|
||||
if((!pack_rhs_once) || i2==0)
|
||||
pack_rhs(blockB, rhs.getSubMapper(k2,j2), actual_kc, actual_nc);
|
||||
|
||||
|
||||
// Everything is packed, we can now call the panel * block kernel:
|
||||
gebp(res.getSubMapper(i2, j2), blockA, blockB, actual_mc, actual_kc, actual_nc, alpha);
|
||||
}
|
||||
@ -229,7 +229,7 @@ struct gemm_functor
|
||||
(Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(),
|
||||
m_actualAlpha, m_blocking, info);
|
||||
}
|
||||
|
||||
|
||||
typedef typename Gemm::Traits Traits;
|
||||
|
||||
protected:
|
||||
@ -313,7 +313,7 @@ class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, M
|
||||
this->m_blockB = reinterpret_cast<RhsScalar*>((internal::UIntPtr(m_staticB) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1));
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
void initParallel(Index, Index, Index, Index)
|
||||
{}
|
||||
|
||||
@ -359,14 +359,14 @@ class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, M
|
||||
m_sizeA = this->m_mc * this->m_kc;
|
||||
m_sizeB = this->m_kc * this->m_nc;
|
||||
}
|
||||
|
||||
|
||||
void initParallel(Index rows, Index cols, Index depth, Index num_threads)
|
||||
{
|
||||
this->m_mc = Transpose ? cols : rows;
|
||||
this->m_nc = Transpose ? rows : cols;
|
||||
this->m_kc = depth;
|
||||
|
||||
eigen_internal_assert(this->m_blockA==0 && this->m_blockB==0);
|
||||
|
||||
eigen_internal_assert(this->m_blockA==0 && this->m_blockB==0);
|
||||
Index m = this->m_mc;
|
||||
computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, m, this->m_nc, num_threads);
|
||||
m_sizeA = this->m_mc * this->m_kc;
|
||||
@ -401,7 +401,7 @@ class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, M
|
||||
} // end namespace internal
|
||||
|
||||
namespace internal {
|
||||
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct>
|
||||
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct> >
|
||||
@ -409,21 +409,21 @@ struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct>
|
||||
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
|
||||
typedef typename Lhs::Scalar LhsScalar;
|
||||
typedef typename Rhs::Scalar RhsScalar;
|
||||
|
||||
|
||||
typedef internal::blas_traits<Lhs> LhsBlasTraits;
|
||||
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
|
||||
typedef typename internal::remove_all<ActualLhsType>::type ActualLhsTypeCleaned;
|
||||
|
||||
|
||||
typedef internal::blas_traits<Rhs> RhsBlasTraits;
|
||||
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
|
||||
typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
|
||||
|
||||
|
||||
enum {
|
||||
MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
|
||||
};
|
||||
|
||||
|
||||
typedef generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> lazyproduct;
|
||||
|
||||
|
||||
template<typename Dst>
|
||||
static void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
@ -453,7 +453,7 @@ struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct>
|
||||
else
|
||||
scaleAndAddTo(dst, lhs, rhs, Scalar(-1));
|
||||
}
|
||||
|
||||
|
||||
template<typename Dest>
|
||||
static void scaleAndAddTo(Dest& dst, const Lhs& a_lhs, const Rhs& a_rhs, const Scalar& alpha)
|
||||
{
|
||||
@ -481,7 +481,7 @@ struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct>
|
||||
|
||||
BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), 1, true);
|
||||
internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>
|
||||
(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), Dest::Flags&RowMajorBit);
|
||||
(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), a_lhs.cols(), Dest::Flags&RowMajorBit);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -10,7 +10,7 @@
|
||||
#ifndef EIGEN_PARALLELIZER_H
|
||||
#define EIGEN_PARALLELIZER_H
|
||||
|
||||
namespace Eigen {
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
@ -83,7 +83,7 @@ template<typename Index> struct GemmParallelInfo
|
||||
};
|
||||
|
||||
template<bool Condition, typename Functor, typename Index>
|
||||
void parallelize_gemm(const Functor& func, Index rows, Index cols, bool transpose)
|
||||
void parallelize_gemm(const Functor& func, Index rows, Index cols, Index depth, bool transpose)
|
||||
{
|
||||
// TODO when EIGEN_USE_BLAS is defined,
|
||||
// we should still enable OMP for other scalar types
|
||||
@ -92,6 +92,7 @@ void parallelize_gemm(const Functor& func, Index rows, Index cols, bool transpos
|
||||
// the matrix product when multithreading is enabled. This is a temporary
|
||||
// fix to support row-major destination matrices. This whole
|
||||
// parallelizer mechanism has to be redisigned anyway.
|
||||
EIGEN_UNUSED_VARIABLE(depth);
|
||||
EIGEN_UNUSED_VARIABLE(transpose);
|
||||
func(0,rows, 0,cols);
|
||||
#else
|
||||
@ -106,6 +107,12 @@ void parallelize_gemm(const Functor& func, Index rows, Index cols, bool transpos
|
||||
// FIXME this has to be fine tuned
|
||||
Index size = transpose ? rows : cols;
|
||||
Index pb_max_threads = std::max<Index>(1,size / 32);
|
||||
// compute the maximal number of threads from the total amount of work:
|
||||
double work = static_cast<double>(rows) * static_cast<double>(cols) *
|
||||
static_cast<double>(depth);
|
||||
double kMinTaskSize = 50000; // Heuristic.
|
||||
max_threads = std::max<Index>(1, std::min<Index>(max_threads, work / kMinTaskSize));
|
||||
|
||||
// compute the number of threads we are going to use
|
||||
Index threads = std::min<Index>(nbThreads(), pb_max_threads);
|
||||
|
||||
@ -120,19 +127,19 @@ void parallelize_gemm(const Functor& func, Index rows, Index cols, bool transpos
|
||||
|
||||
if(transpose)
|
||||
std::swap(rows,cols);
|
||||
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(GemmParallelInfo<Index>,info,threads,0);
|
||||
|
||||
|
||||
#pragma omp parallel num_threads(threads)
|
||||
{
|
||||
Index i = omp_get_thread_num();
|
||||
// Note that the actual number of threads might be lower than the number of request ones.
|
||||
Index actual_threads = omp_get_num_threads();
|
||||
|
||||
|
||||
Index blockCols = (cols / actual_threads) & ~Index(0x3);
|
||||
Index blockRows = (rows / actual_threads);
|
||||
blockRows = (blockRows/Functor::Traits::mr)*Functor::Traits::mr;
|
||||
|
||||
|
||||
Index r0 = i*blockRows;
|
||||
Index actualBlockRows = (i+1==actual_threads) ? rows-r0 : blockRows;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user