API change: ei_matrix_exponential(A) --> A.exp(), etc

As discussed on mailing list; see
http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2010/02/msg00190.html
This commit is contained in:
Jitse Niesen 2010-03-16 17:26:55 +00:00
parent d536fef1bb
commit 04a4e22c58
11 changed files with 74 additions and 75 deletions

View File

@ -372,6 +372,16 @@ template<typename Derived> class MatrixBase
template<typename OtherScalar>
void applyOnTheRight(int p, int q, const PlanarRotation<OtherScalar>& j);
///////// MatrixFunctions module /////////
typedef typename ei_stem_function<Scalar>::type StemFunction;
const MatrixExponentialReturnValue<Derived> exp() const;
const MatrixFunctionReturnValue<Derived> matrixFunction(StemFunction f) const;
const MatrixFunctionReturnValue<Derived> cosh() const;
const MatrixFunctionReturnValue<Derived> sinh() const;
const MatrixFunctionReturnValue<Derived> cos() const;
const MatrixFunctionReturnValue<Derived> sin() const;
#ifdef EIGEN2_SUPPORT
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,

View File

@ -167,6 +167,17 @@ template<typename Scalar,int Dim> class Translation;
template<typename Scalar> class UniformScaling;
template<typename MatrixType,int Direction> class Homogeneous;
// MatrixFunctions module
template<typename Derived> struct MatrixExponentialReturnValue;
template<typename Derived> struct MatrixFunctionReturnValue;
template <typename Scalar>
struct ei_stem_function
{
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef ComplexScalar type(ComplexScalar, int);
};
#ifdef EIGEN2_SUPPORT
template<typename ExpressionType> class Cwise;
#endif

View File

@ -290,8 +290,8 @@ void MatrixExponential<MatrixType>::computeUV(double)
* This class holds the argument to the matrix exponential until it
* is assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* ei_matrix_exponential() and most of the time this is the only way
* it is used.
* MatrixBase::exp() and most of the time this is the only way it is
* used.
*/
template<typename Derived> struct MatrixExponentialReturnValue
: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
@ -381,11 +381,10 @@ struct ei_traits<MatrixExponentialReturnValue<Derived> >
* \c complex<float> or \c complex<double> .
*/
template <typename Derived>
MatrixExponentialReturnValue<Derived>
ei_matrix_exponential(const MatrixBase<Derived> &M)
const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
{
ei_assert(M.rows() == M.cols());
return MatrixExponentialReturnValue<Derived>(M.derived());
ei_assert(rows() == cols());
return MatrixExponentialReturnValue<Derived>(derived());
}
#endif // EIGEN_MATRIX_EXPONENTIAL

View File

@ -59,7 +59,7 @@ class MatrixFunction
* \param[out] result the function \p f applied to \p A, as
* specified in the constructor.
*
* See ei_matrix_function() for details on how this computation
* See MatrixBase::matrixFunction() for details on how this computation
* is implemented.
*/
template <typename ResultType>
@ -486,8 +486,8 @@ typename MatrixFunction<MatrixType,1>::DynMatrixType MatrixFunction<MatrixType,1
* This class holds the argument to the matrix function until it is
* assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* ei_matrix_function() and related functions and most of the time
* this is the only way it is used.
* matrixBase::matrixFunction() and related functions and most of the
* time this is the only way it is used.
*/
template<typename Derived> class MatrixFunctionReturnValue
: public ReturnByValue<MatrixFunctionReturnValue<Derived> >
@ -533,6 +533,9 @@ struct ei_traits<MatrixFunctionReturnValue<Derived> >
};
/********** MatrixBase methods **********/
/** \ingroup MatrixFunctions_Module
*
* \brief Compute a matrix function.
@ -571,7 +574,7 @@ struct ei_traits<MatrixFunctionReturnValue<Derived> >
* \end{array} \right]. \f]
* This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
* the z-axis. This is the same example as used in the documentation
* of ei_matrix_exponential().
* of MatrixBase::exp().
*
* \include MatrixFunction.cpp
* Output: \verbinclude MatrixFunction.out
@ -580,16 +583,14 @@ struct ei_traits<MatrixFunctionReturnValue<Derived> >
* \c x, even though the matrix \c A is over the reals. Instead of
* \c expfn, we could also have used StdStemFunctions::exp:
* \code
* ei_matrix_function(A, StdStemFunctions<std::complex<double> >::exp, &B);
* A.matrixFunction(StdStemFunctions<std::complex<double> >::exp, &B);
* \endcode
*/
template <typename Derived>
MatrixFunctionReturnValue<Derived>
ei_matrix_function(const MatrixBase<Derived> &M,
typename ei_stem_function<typename ei_traits<Derived>::Scalar>::type f)
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename ei_stem_function<typename ei_traits<Derived>::Scalar>::type f) const
{
ei_assert(M.rows() == M.cols());
return MatrixFunctionReturnValue<Derived>(M.derived(), f);
ei_assert(rows() == cols());
return MatrixFunctionReturnValue<Derived>(derived(), f);
}
/** \ingroup MatrixFunctions_Module
@ -599,19 +600,17 @@ ei_matrix_function(const MatrixBase<Derived> &M,
* \param[in] M a square matrix.
* \returns expression representing \f$ \sin(M) \f$.
*
* This function calls ei_matrix_function() with StdStemFunctions::sin().
* This function calls matrixFunction() with StdStemFunctions::sin().
*
* \include MatrixSine.cpp
* Output: \verbinclude MatrixSine.out
*/
template <typename Derived>
MatrixFunctionReturnValue<Derived>
ei_matrix_sin(const MatrixBase<Derived>& M)
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
{
ei_assert(M.rows() == M.cols());
typedef typename ei_traits<Derived>::Scalar Scalar;
ei_assert(rows() == cols());
typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(M.derived(), StdStemFunctions<ComplexScalar>::sin);
return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sin);
}
/** \ingroup MatrixFunctions_Module
@ -621,18 +620,16 @@ ei_matrix_sin(const MatrixBase<Derived>& M)
* \param[in] M a square matrix.
* \returns expression representing \f$ \cos(M) \f$.
*
* This function calls ei_matrix_function() with StdStemFunctions::cos().
* This function calls matrixFunction() with StdStemFunctions::cos().
*
* \sa ei_matrix_sin() for an example.
*/
template <typename Derived>
MatrixFunctionReturnValue<Derived>
ei_matrix_cos(const MatrixBase<Derived>& M)
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
{
ei_assert(M.rows() == M.cols());
typedef typename ei_traits<Derived>::Scalar Scalar;
ei_assert(rows() == cols());
typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(M.derived(), StdStemFunctions<ComplexScalar>::cos);
return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cos);
}
/** \ingroup MatrixFunctions_Module
@ -642,19 +639,17 @@ ei_matrix_cos(const MatrixBase<Derived>& M)
* \param[in] M a square matrix.
* \returns expression representing \f$ \sinh(M) \f$
*
* This function calls ei_matrix_function() with StdStemFunctions::sinh().
* This function calls matrixFunction() with StdStemFunctions::sinh().
*
* \include MatrixSinh.cpp
* Output: \verbinclude MatrixSinh.out
*/
template <typename Derived>
MatrixFunctionReturnValue<Derived>
ei_matrix_sinh(const MatrixBase<Derived>& M)
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
{
ei_assert(M.rows() == M.cols());
typedef typename ei_traits<Derived>::Scalar Scalar;
ei_assert(rows() == cols());
typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(M.derived(), StdStemFunctions<ComplexScalar>::sinh);
return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sinh);
}
/** \ingroup MatrixFunctions_Module
@ -664,18 +659,16 @@ ei_matrix_sinh(const MatrixBase<Derived>& M)
* \param[in] M a square matrix.
* \returns expression representing \f$ \cosh(M) \f$
*
* This function calls ei_matrix_function() with StdStemFunctions::cosh().
* This function calls matrixFunction() with StdStemFunctions::cosh().
*
* \sa ei_matrix_sinh() for an example.
*/
template <typename Derived>
MatrixFunctionReturnValue<Derived>
ei_matrix_cosh(const MatrixBase<Derived>& M)
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
{
ei_assert(M.rows() == M.cols());
typedef typename ei_traits<Derived>::Scalar Scalar;
ei_assert(rows() == cols());
typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(M.derived(), StdStemFunctions<ComplexScalar>::cosh);
return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cosh);
}
#endif // EIGEN_MATRIX_FUNCTION

View File

@ -25,13 +25,6 @@
#ifndef EIGEN_STEM_FUNCTION
#define EIGEN_STEM_FUNCTION
template <typename Scalar>
struct ei_stem_function
{
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef ComplexScalar type(ComplexScalar, int);
};
/** \ingroup MatrixFunctions_Module
* \brief Stem functions corresponding to standard mathematical functions.
*/

View File

@ -12,7 +12,5 @@ int main()
pi/4, 0, 0,
0, 0, 0;
std::cout << "The matrix A is:\n" << A << "\n\n";
MatrixXd B = ei_matrix_exponential(A);
std::cout << "The matrix exponential of A is:\n" << B << "\n\n";
std::cout << "The matrix exponential of A is:\n" << A.exp() << "\n\n";
}

View File

@ -19,5 +19,5 @@ int main()
std::cout << "The matrix A is:\n" << A << "\n\n";
std::cout << "The matrix exponential of A is:\n"
<< ei_matrix_function(A, expfn) << "\n\n";
<< A.matrixFunction(expfn) << "\n\n";
}

View File

@ -8,10 +8,10 @@ int main()
MatrixXd A = MatrixXd::Random(3,3);
std::cout << "A = \n" << A << "\n\n";
MatrixXd sinA = ei_matrix_sin(A);
MatrixXd sinA = A.sin();
std::cout << "sin(A) = \n" << sinA << "\n\n";
MatrixXd cosA = ei_matrix_cos(A);
MatrixXd cosA = A.cos();
std::cout << "cos(A) = \n" << cosA << "\n\n";
// The matrix functions satisfy sin^2(A) + cos^2(A) = I,

View File

@ -8,10 +8,10 @@ int main()
MatrixXf A = MatrixXf::Random(3,3);
std::cout << "A = \n" << A << "\n\n";
MatrixXf sinhA = ei_matrix_sinh(A);
MatrixXf sinhA = A.sinh();
std::cout << "sinh(A) = \n" << sinhA << "\n\n";
MatrixXf coshA = ei_matrix_cosh(A);
MatrixXf coshA = A.cosh();
std::cout << "cosh(A) = \n" << coshA << "\n\n";
// The matrix functions satisfy cosh^2(A) - sinh^2(A) = I,

View File

@ -57,11 +57,11 @@ void test2dRotation(double tol)
angle = static_cast<T>(pow(10, i / 5. - 2));
B << cos(angle), sin(angle), -sin(angle), cos(angle);
C = ei_matrix_function(angle*A, expfn);
C = (angle*A).matrixFunction(expfn);
std::cout << "test2dRotation: i = " << i << " error funm = " << relerr(C, B);
VERIFY(C.isApprox(B, static_cast<T>(tol)));
C = ei_matrix_exponential(angle*A);
C = (angle*A).exp();
std::cout << " error expm = " << relerr(C, B) << "\n";
VERIFY(C.isApprox(B, static_cast<T>(tol)));
}
@ -82,11 +82,11 @@ void test2dHyperbolicRotation(double tol)
A << 0, angle*imagUnit, -angle*imagUnit, 0;
B << ch, sh*imagUnit, -sh*imagUnit, ch;
C = ei_matrix_function(A, expfn);
C = A.matrixFunction(expfn);
std::cout << "test2dHyperbolicRotation: i = " << i << " error funm = " << relerr(C, B);
VERIFY(C.isApprox(B, static_cast<T>(tol)));
C = ei_matrix_exponential(A);
C = A.exp();
std::cout << " error expm = " << relerr(C, B) << "\n";
VERIFY(C.isApprox(B, static_cast<T>(tol)));
}
@ -106,11 +106,11 @@ void testPascal(double tol)
for (int j=0; j<=i; j++)
B(i,j) = static_cast<T>(binom(i,j));
C = ei_matrix_function(A, expfn);
C = A.matrixFunction(expfn);
std::cout << "testPascal: size = " << size << " error funm = " << relerr(C, B);
VERIFY(C.isApprox(B, static_cast<T>(tol)));
C = ei_matrix_exponential(A);
C = A.exp();
std::cout << " error expm = " << relerr(C, B) << "\n";
VERIFY(C.isApprox(B, static_cast<T>(tol)));
}
@ -132,11 +132,11 @@ void randomTest(const MatrixType& m, double tol)
for(int i = 0; i < g_repeat; i++) {
m1 = MatrixType::Random(rows, cols);
m2 = ei_matrix_function(m1, expfn) * ei_matrix_function(-m1, expfn);
m2 = m1.matrixFunction(expfn) * (-m1).matrixFunction(expfn);
std::cout << "randomTest: error funm = " << relerr(identity, m2);
VERIFY(identity.isApprox(m2, static_cast<RealScalar>(tol)));
m2 = ei_matrix_exponential(m1) * ei_matrix_exponential(-m1);
m2 = m1.exp() * (-m1).exp();
std::cout << " error expm = " << relerr(identity, m2) << "\n";
VERIFY(identity.isApprox(m2, static_cast<RealScalar>(tol)));
}

View File

@ -114,8 +114,7 @@ void testMatrixExponential(const MatrixType& A)
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> ComplexScalar;
VERIFY_IS_APPROX(ei_matrix_exponential(A),
ei_matrix_function(A, StdStemFunctions<ComplexScalar>::exp));
VERIFY_IS_APPROX(A.exp(), A.matrixFunction(StdStemFunctions<ComplexScalar>::exp));
}
template<typename MatrixType>
@ -123,10 +122,8 @@ void testHyperbolicFunctions(const MatrixType& A)
{
// Need to use absolute error because of possible cancellation when
// adding/subtracting expA and expmA.
MatrixType expA = ei_matrix_exponential(A);
MatrixType expmA = ei_matrix_exponential(-A);
VERIFY_IS_APPROX_ABS(ei_matrix_sinh(A), (expA - expmA) / 2);
VERIFY_IS_APPROX_ABS(ei_matrix_cosh(A), (expA + expmA) / 2);
VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2);
VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2);
}
template<typename MatrixType>
@ -143,15 +140,13 @@ void testGonioFunctions(const MatrixType& A)
ComplexMatrix Ac = A.template cast<ComplexScalar>();
ComplexMatrix exp_iA = ei_matrix_exponential(imagUnit * Ac);
ComplexMatrix exp_miA = ei_matrix_exponential(-imagUnit * Ac);
ComplexMatrix exp_iA = (imagUnit * Ac).exp();
ComplexMatrix exp_miA = (-imagUnit * Ac).exp();
MatrixType sinA = ei_matrix_sin(A);
ComplexMatrix sinAc = sinA.template cast<ComplexScalar>();
ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>();
VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit));
MatrixType cosA = ei_matrix_cos(A);
ComplexMatrix cosAc = cosA.template cast<ComplexScalar>();
ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>();
VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2);
}