mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-13 18:37:27 +08:00
Made half floats usable on hardware that doesn't support them natively.
This commit is contained in:
parent
b72ffcb05e
commit
048c4d6efd
@ -331,6 +331,8 @@ using std::ptrdiff_t;
|
||||
#include "src/Core/arch/NEON/Complex.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/arch/CUDA/Half.h"
|
||||
|
||||
#if defined EIGEN_VECTORIZE_CUDA
|
||||
#include "src/Core/arch/CUDA/PacketMath.h"
|
||||
#include "src/Core/arch/CUDA/PacketMathHalf.h"
|
||||
|
337
Eigen/src/Core/arch/CUDA/Half.h
Normal file
337
Eigen/src/Core/arch/CUDA/Half.h
Normal file
@ -0,0 +1,337 @@
|
||||
// Standard 16-bit float type, mostly useful for GPUs. Defines a new
|
||||
// class Eigen::half (inheriting from CUDA's __half struct) with
|
||||
// operator overloads such that it behaves basically as an arithmetic
|
||||
// type. It will be quite slow on CPUs (so it is recommended to stay
|
||||
// in fp32 for CPUs, except for simple parameter conversions, I/O
|
||||
// to disk and the likes), but fast on GPUs.
|
||||
//
|
||||
//
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
//
|
||||
// The conversion routines are Copyright (c) Fabian Giesen, 2016.
|
||||
// The original license follows:
|
||||
//
|
||||
// Copyright (c) Fabian Giesen, 2016
|
||||
// All rights reserved.
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted.
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
#ifndef EIGEN_HALF_CUDA_H
|
||||
#define EIGEN_HALF_CUDA_H
|
||||
|
||||
#if !defined(EIGEN_HAS_CUDA_FP16)
|
||||
|
||||
// Make our own __half definition that is similar to CUDA's.
|
||||
struct __half {
|
||||
uint16_t x;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
static inline EIGEN_DEVICE_FUNC __half raw_uint16_to_half(uint16_t x);
|
||||
static inline EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff);
|
||||
static inline EIGEN_DEVICE_FUNC float half_to_float(__half h);
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
// Class definition.
|
||||
struct half : public __half {
|
||||
EIGEN_DEVICE_FUNC half() : __half(internal::raw_uint16_to_half(0)) {}
|
||||
|
||||
// TODO(sesse): Should these conversions be marked as explicit?
|
||||
EIGEN_DEVICE_FUNC half(float f) : __half(internal::float_to_half_rtne(f)) {}
|
||||
EIGEN_DEVICE_FUNC half(int i) : __half(internal::float_to_half_rtne(i)) {}
|
||||
EIGEN_DEVICE_FUNC half(double d) : __half(internal::float_to_half_rtne(d)) {}
|
||||
EIGEN_DEVICE_FUNC half(bool b)
|
||||
: __half(internal::raw_uint16_to_half(b ? 0x3c00 : 0)) {}
|
||||
EIGEN_DEVICE_FUNC half(const __half& h) : __half(h) {}
|
||||
EIGEN_DEVICE_FUNC half(const half& h) : __half(h) {}
|
||||
EIGEN_DEVICE_FUNC half(const volatile half& h)
|
||||
: __half(internal::raw_uint16_to_half(h.x)) {}
|
||||
|
||||
EIGEN_DEVICE_FUNC explicit operator float() const {
|
||||
return internal::half_to_float(*this);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC explicit operator double() const {
|
||||
return internal::half_to_float(*this);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC half& operator=(const half& other) {
|
||||
x = other.x;
|
||||
return *this;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC half& operator=(const volatile half& other) {
|
||||
x = other.x;
|
||||
return *this;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC volatile half& operator=(const half& other) volatile {
|
||||
x = other.x;
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
|
||||
|
||||
// Intrinsics for native fp16 support. Note that on current hardware,
|
||||
// these are no faster than fp32 arithmetic (you need to use the half2
|
||||
// versions to get the ALU speed increased), but you do save the
|
||||
// conversion steps back and forth.
|
||||
|
||||
__device__ half operator + (const half& a, const half& b) {
|
||||
return __hadd(a, b);
|
||||
}
|
||||
__device__ half operator * (const half& a, const half& b) {
|
||||
return __hmul(a, b);
|
||||
}
|
||||
__device__ half operator - (const half& a, const half& b) {
|
||||
return __hsub(a, b);
|
||||
}
|
||||
__device__ half operator / (const half& a, const half& b) {
|
||||
float num = __half2float(a);
|
||||
float denom = __half2float(b);
|
||||
return __float2half(num / denom);
|
||||
}
|
||||
__device__ half operator - (const half& a) {
|
||||
return __hneg(a);
|
||||
}
|
||||
__device__ half& operator += (half& a, const half& b) {
|
||||
a = a + b;
|
||||
return a;
|
||||
}
|
||||
__device__ half& operator *= (half& a, const half& b) {
|
||||
a = a * b;
|
||||
return a;
|
||||
}
|
||||
__device__ half& operator -= (half& a, const half& b) {
|
||||
a = a - b;
|
||||
return a;
|
||||
}
|
||||
__device__ half& operator /= (half& a, const half& b) {
|
||||
a = a / b;
|
||||
return a;
|
||||
}
|
||||
__device__ bool operator == (const half& a, const half& b) {
|
||||
return __heq(a, b);
|
||||
}
|
||||
__device__ bool operator != (const half& a, const half& b) {
|
||||
return __hne(a, b);
|
||||
}
|
||||
__device__ bool operator < (const half& a, const half& b) {
|
||||
return __hle(a, b);
|
||||
}
|
||||
__device__ bool operator > (const half& a, const half& b) {
|
||||
return __hgt(a, b);
|
||||
}
|
||||
|
||||
#else // Not CUDA 530
|
||||
|
||||
// Definitions for CPUs and older CUDA, mostly working through conversion
|
||||
// to/from fp32.
|
||||
|
||||
static inline EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) {
|
||||
return half(float(a) + float(b));
|
||||
}
|
||||
static inline EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) {
|
||||
return half(float(a) * float(b));
|
||||
}
|
||||
static inline EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) {
|
||||
return half(float(a) - float(b));
|
||||
}
|
||||
static inline EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) {
|
||||
return half(float(a) / float(b));
|
||||
}
|
||||
static inline EIGEN_DEVICE_FUNC half operator - (const half& a) {
|
||||
half result;
|
||||
result.x = a.x ^ 0x8000;
|
||||
return result;
|
||||
}
|
||||
static inline EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) {
|
||||
a = half(float(a) + float(b));
|
||||
return a;
|
||||
}
|
||||
static inline EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) {
|
||||
a = half(float(a) * float(b));
|
||||
return a;
|
||||
}
|
||||
static inline EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) {
|
||||
a = half(float(a) - float(b));
|
||||
return a;
|
||||
}
|
||||
static inline EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) {
|
||||
a = half(float(a) / float(b));
|
||||
return a;
|
||||
}
|
||||
static inline EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) {
|
||||
return float(a) == float(b);
|
||||
}
|
||||
static inline EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) {
|
||||
return float(a) != float(b);
|
||||
}
|
||||
static inline EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) {
|
||||
return float(a) < float(b);
|
||||
}
|
||||
static inline EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) {
|
||||
return float(a) > float(b);
|
||||
}
|
||||
|
||||
#endif // Not CUDA 530
|
||||
|
||||
// Conversion routines, including fallbacks for the host or older CUDA.
|
||||
// Note that newer Intel CPUs (Haswell or newer) have vectorized versions of
|
||||
// these in hardware. If we need more performance on older/other CPUs, they are
|
||||
// also possible to vectorize directly.
|
||||
|
||||
namespace internal {
|
||||
|
||||
static inline EIGEN_DEVICE_FUNC __half raw_uint16_to_half(uint16_t x) {
|
||||
__half h;
|
||||
h.x = x;
|
||||
return h;
|
||||
}
|
||||
|
||||
union FP32 {
|
||||
uint32_t u;
|
||||
float f;
|
||||
};
|
||||
|
||||
static inline EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff) {
|
||||
#if defined(__CUDA_ARCH__) && defined(EIGEN_HAS_CUDA_FP16)
|
||||
return __float2half(ff);
|
||||
#else
|
||||
FP32 f; f.f = ff;
|
||||
|
||||
const FP32 f32infty = { 255 << 23 };
|
||||
const FP32 f16max = { (127 + 16) << 23 };
|
||||
const FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 };
|
||||
uint32_t sign_mask = 0x80000000u;
|
||||
__half o = { 0 };
|
||||
|
||||
uint32_t sign = f.u & sign_mask;
|
||||
f.u ^= sign;
|
||||
|
||||
// NOTE all the integer compares in this function can be safely
|
||||
// compiled into signed compares since all operands are below
|
||||
// 0x80000000. Important if you want fast straight SSE2 code
|
||||
// (since there's no unsigned PCMPGTD).
|
||||
|
||||
if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set)
|
||||
o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
|
||||
} else { // (De)normalized number or zero
|
||||
if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero
|
||||
// use a magic value to align our 10 mantissa bits at the bottom of
|
||||
// the float. as long as FP addition is round-to-nearest-even this
|
||||
// just works.
|
||||
f.f += denorm_magic.f;
|
||||
|
||||
// and one integer subtract of the bias later, we have our final float!
|
||||
o.x = f.u - denorm_magic.u;
|
||||
} else {
|
||||
uint32_t mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd
|
||||
|
||||
// update exponent, rounding bias part 1
|
||||
f.u += ((uint32_t)(15 - 127) << 23) + 0xfff;
|
||||
// rounding bias part 2
|
||||
f.u += mant_odd;
|
||||
// take the bits!
|
||||
o.x = f.u >> 13;
|
||||
}
|
||||
}
|
||||
|
||||
o.x |= sign >> 16;
|
||||
return o;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline EIGEN_DEVICE_FUNC float half_to_float(__half h) {
|
||||
#if defined(__CUDA_ARCH__) && defined(EIGEN_HAS_CUDA_FP16)
|
||||
return __half2float(h);
|
||||
#else
|
||||
const FP32 magic = { 113 << 23 };
|
||||
const uint32_t shifted_exp = 0x7c00 << 13; // exponent mask after shift
|
||||
FP32 o;
|
||||
|
||||
o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits
|
||||
uint32_t exp = shifted_exp & o.u; // just the exponent
|
||||
o.u += (127 - 15) << 23; // exponent adjust
|
||||
|
||||
// handle exponent special cases
|
||||
if (exp == shifted_exp) { // Inf/NaN?
|
||||
o.u += (128 - 16) << 23; // extra exp adjust
|
||||
} else if (exp == 0) { // Zero/Denormal?
|
||||
o.u += 1 << 23; // extra exp adjust
|
||||
o.f -= magic.f; // renormalize
|
||||
}
|
||||
|
||||
o.u |= (h.x & 0x8000) << 16; // sign bit
|
||||
return o.f;
|
||||
#endif
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
// Traits.
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<> struct is_arithmetic<half> { enum { value = true }; };
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
// Infinity/NaN checks.
|
||||
|
||||
namespace numext {
|
||||
|
||||
static inline EIGEN_DEVICE_FUNC bool (isinf)(const Eigen::half& a) {
|
||||
return (a.x & 0x7fff) == 0x7c00;
|
||||
}
|
||||
static inline EIGEN_HALF_CUDA_H bool (isnan)(const Eigen::half& a) {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
|
||||
return __hisnan(x);
|
||||
#else
|
||||
return (a.x & 0x7fff) > 0x7c00;
|
||||
#endif
|
||||
}
|
||||
|
||||
} // end namespace numext
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
// Standard mathematical functions and trancendentals.
|
||||
|
||||
namespace std {
|
||||
|
||||
static inline EIGEN_DEVICE_FUNC Eigen::half abs(const Eigen::half& a) {
|
||||
Eigen::half result;
|
||||
result.x = a.x & 0x7FFF;
|
||||
return result;
|
||||
}
|
||||
static inline EIGEN_DEVICE_FUNC Eigen::half exp(const Eigen::half& a) {
|
||||
return Eigen::half(expf(float(a)));
|
||||
}
|
||||
static inline EIGEN_DEVICE_FUNC Eigen::half log(const Eigen::half& a) {
|
||||
return Eigen::half(logf(float(a)));
|
||||
}
|
||||
|
||||
} // end namespace std
|
||||
|
||||
#endif // EIGEN_HALF_CUDA_H
|
@ -19,55 +19,9 @@
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300
|
||||
|
||||
// The following operations require arch >= 5.3
|
||||
#if __CUDA_ARCH__ >= 530
|
||||
__device__ half operator + (const half& a, const half& b) {
|
||||
return __hadd(a, b);
|
||||
}
|
||||
__device__ half operator * (const half& a, const half& b) {
|
||||
return __hmul(a, b);
|
||||
}
|
||||
__device__ half operator - (const half& a, const half& b) {
|
||||
return __hsub(a, b);
|
||||
}
|
||||
__device__ half operator / (const half& a, const half& b) {
|
||||
float num = __half2float(a);
|
||||
float denom = __half2float(b);
|
||||
return __float2half(num / denom);
|
||||
}
|
||||
__device__ half operator - (const half& a) {
|
||||
return __hneg(a);
|
||||
}
|
||||
__device__ half& operator += (half& a, const half& b) {
|
||||
a = a + b;
|
||||
return a;
|
||||
}
|
||||
__device__ half& operator *= (half& a, const half& b) {
|
||||
a = a * b;
|
||||
return a;
|
||||
}
|
||||
__device__ half& operator -= (half& a, const half& b) {
|
||||
a = a - b;
|
||||
return a;
|
||||
}
|
||||
__device__ half& operator /= (half& a, const half& b) {
|
||||
a = a / b;
|
||||
return a;
|
||||
}
|
||||
|
||||
namespace std {
|
||||
__device__ half abs(const half& a) {
|
||||
half result;
|
||||
result.x = a.x & 0x7FFF;
|
||||
return result;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
namespace internal {
|
||||
|
||||
template<> struct is_arithmetic<half> { enum { value = true }; };
|
||||
template<> struct is_arithmetic<half2> { enum { value = true }; };
|
||||
|
||||
template<> struct packet_traits<half> : default_packet_traits
|
||||
|
@ -19,30 +19,28 @@
|
||||
|
||||
using Eigen::Tensor;
|
||||
|
||||
#ifdef EIGEN_HAS_CUDA_FP16
|
||||
|
||||
void test_cuda_conversion() {
|
||||
Eigen::CudaStreamDevice stream;
|
||||
Eigen::GpuDevice gpu_device(&stream);
|
||||
int num_elem = 101;
|
||||
|
||||
|
||||
Tensor<float, 1> floats(num_elem);
|
||||
floats.setRandom();
|
||||
|
||||
float* d_float = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
half* d_half = (half*)gpu_device.allocate(num_elem * sizeof(half));
|
||||
Eigen::half* d_half = (Eigen::half*)gpu_device.allocate(num_elem * sizeof(Eigen::half));
|
||||
float* d_conv = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_float(
|
||||
d_float, num_elem);
|
||||
Eigen::TensorMap<Eigen::Tensor<half, 1>, Eigen::Aligned> gpu_half(
|
||||
Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_half(
|
||||
d_half, num_elem);
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_conv(
|
||||
d_conv, num_elem);
|
||||
|
||||
gpu_device.memcpyHostToDevice(d_float, floats.data(), num_elem*sizeof(float));
|
||||
|
||||
gpu_half.device(gpu_device) = gpu_float.cast<half>();
|
||||
gpu_half.device(gpu_device) = gpu_float.cast<Eigen::half>();
|
||||
gpu_conv.device(gpu_device) = gpu_half.cast<float>();
|
||||
|
||||
Tensor<float, 1> initial(num_elem);
|
||||
@ -60,14 +58,8 @@ void test_cuda_conversion() {
|
||||
gpu_device.deallocate(d_conv);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
void test_cxx11_tensor_cast_float16_cuda()
|
||||
{
|
||||
#ifdef EIGEN_HAS_CUDA_FP16
|
||||
CALL_SUBTEST(test_cuda_conversion());
|
||||
#else
|
||||
std::cout << "Half floats are not supported by this version of cuda: skipping the test" << std::endl;
|
||||
#endif
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user