mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
bug #1071: improve doc on lpNorm and add example for some operator norms
This commit is contained in:
parent
8c1ee3629f
commit
02e940fc9f
@ -178,9 +178,11 @@ struct lpNorm_selector<Derived, Infinity>
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
|
||||
* of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
|
||||
* norm, that is the maximum of the absolute values of the coefficients of *this.
|
||||
/** \returns the \b coefficient-wise \f$ \ell^p \f$ norm of \c *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
|
||||
* of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
|
||||
* norm, that is the maximum of the absolute values of the coefficients of \c *this.
|
||||
*
|
||||
* \note For matrices, this function does not compute the <a href="https://en.wikipedia.org/wiki/Operator_norm">operator-norm</a>. That is, if \c *this is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink.
|
||||
*
|
||||
* \sa norm()
|
||||
*/
|
||||
|
@ -32,7 +32,7 @@ Eigen also provides the \link MatrixBase::norm() norm() \endlink method, which r
|
||||
|
||||
These operations can also operate on matrices; in that case, a n-by-p matrix is seen as a vector of size (n*p), so for example the \link MatrixBase::norm() norm() \endlink method returns the "Frobenius" or "Hilbert-Schmidt" norm. We refrain from speaking of the \f$\ell^2\f$ norm of a matrix because that can mean different things.
|
||||
|
||||
If you want other \f$\ell^p\f$ norms, use the \link MatrixBase::lpNorm() lpNorm<p>() \endlink method. The template parameter \a p can take the special value \a Infinity if you want the \f$\ell^\infty\f$ norm, which is the maximum of the absolute values of the coefficients.
|
||||
If you want other coefficient-wise \f$\ell^p\f$ norms, use the \link MatrixBase::lpNorm() lpNorm<p>() \endlink method. The template parameter \a p can take the special value \a Infinity if you want the \f$\ell^\infty\f$ norm, which is the maximum of the absolute values of the coefficients.
|
||||
|
||||
The following example demonstrates these methods.
|
||||
|
||||
@ -45,6 +45,17 @@ The following example demonstrates these methods.
|
||||
\verbinclude Tutorial_ReductionsVisitorsBroadcasting_reductions_norm.out
|
||||
</td></tr></table>
|
||||
|
||||
\b Operator \b norm: The 1-norm and \f$\infty\f$-norm <a href="https://en.wikipedia.org/wiki/Operator_norm">matrix operator norms</a> can easily be computed as follows:
|
||||
<table class="example">
|
||||
<tr><th>Example:</th><th>Output:</th></tr>
|
||||
<tr><td>
|
||||
\include Tutorial_ReductionsVisitorsBroadcasting_reductions_operatornorm.cpp
|
||||
</td>
|
||||
<td>
|
||||
\verbinclude Tutorial_ReductionsVisitorsBroadcasting_reductions_operatornorm.out
|
||||
</td></tr></table>
|
||||
See below for more explanations on the syntax of these expressions.
|
||||
|
||||
\subsection TutorialReductionsVisitorsBroadcastingReductionsBool Boolean reductions
|
||||
|
||||
The following reductions operate on boolean values:
|
||||
|
@ -0,0 +1,18 @@
|
||||
#include <Eigen/Dense>
|
||||
#include <iostream>
|
||||
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
int main()
|
||||
{
|
||||
MatrixXf m(2,2);
|
||||
m << 1,-2,
|
||||
-3,4;
|
||||
|
||||
cout << "1-norm(m) = " << m.cwiseAbs().colwise().sum().maxCoeff()
|
||||
<< " == " << m.colwise().lpNorm<1>().maxCoeff() << endl;
|
||||
|
||||
cout << "infty-norm(m) = " << m.cwiseAbs().rowwise().sum().maxCoeff()
|
||||
<< " == " << m.rowwise().lpNorm<1>().maxCoeff() << endl;
|
||||
}
|
Loading…
Reference in New Issue
Block a user