mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-31 19:00:35 +08:00
Use more .noalias()
This commit is contained in:
parent
14f845a1a8
commit
0259a52b0e
@ -449,23 +449,23 @@ inline void RealQZ<MatrixType>::step(Index f, Index l, Index iter) {
|
||||
Index lr = (std::min)(k + 4, dim); // last row to update
|
||||
Map<Matrix<Scalar, Dynamic, 1> > tmp(m_workspace.data(), lr);
|
||||
// S
|
||||
tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2;
|
||||
tmp.noalias() = m_S.template middleCols<2>(k).topRows(lr) * essential2;
|
||||
tmp += m_S.col(k + 2).head(lr);
|
||||
m_S.col(k + 2).head(lr) -= tau * tmp;
|
||||
m_S.template middleCols<2>(k).topRows(lr) -= (tau * tmp) * essential2.adjoint();
|
||||
m_S.template middleCols<2>(k).topRows(lr).noalias() -= (tau * tmp) * essential2.adjoint();
|
||||
// T
|
||||
tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2;
|
||||
tmp += m_T.col(k + 2).head(lr);
|
||||
m_T.col(k + 2).head(lr) -= tau * tmp;
|
||||
m_T.template middleCols<2>(k).topRows(lr) -= (tau * tmp) * essential2.adjoint();
|
||||
m_T.template middleCols<2>(k).topRows(lr).noalias() -= (tau * tmp) * essential2.adjoint();
|
||||
}
|
||||
if (m_computeQZ) {
|
||||
// Z
|
||||
Map<Matrix<Scalar, 1, Dynamic> > tmp(m_workspace.data(), dim);
|
||||
tmp = essential2.adjoint() * (m_Z.template middleRows<2>(k));
|
||||
tmp.noalias() = essential2.adjoint() * (m_Z.template middleRows<2>(k));
|
||||
tmp += m_Z.row(k + 2);
|
||||
m_Z.row(k + 2) -= tau * tmp;
|
||||
m_Z.template middleRows<2>(k) -= essential2 * (tau * tmp);
|
||||
m_Z.template middleRows<2>(k).noalias() -= essential2 * (tau * tmp);
|
||||
}
|
||||
m_T.coeffRef(k + 2, k) = m_T.coeffRef(k + 2, k + 1) = Scalar(0.0);
|
||||
|
||||
|
@ -1059,11 +1059,11 @@ EIGEN_DEVICE_FUNC void Transform<Scalar, Dim, Mode, Options>::computeRotationSca
|
||||
: Scalar(1); // so x has absolute value 1
|
||||
VectorType sv(svd.singularValues());
|
||||
sv.coeffRef(Dim - 1) *= x;
|
||||
if (scaling) *scaling = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint();
|
||||
if (scaling) (*scaling).noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint();
|
||||
if (rotation) {
|
||||
LinearMatrixType m(svd.matrixU());
|
||||
m.col(Dim - 1) *= x;
|
||||
*rotation = m * svd.matrixV().adjoint();
|
||||
(*rotation).noalias() = m * svd.matrixV().adjoint();
|
||||
}
|
||||
}
|
||||
|
||||
@ -1182,7 +1182,8 @@ EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options> Transform<Scalar, Dim, M
|
||||
eigen_assert(false && "Invalid transform traits in Transform::Inverse");
|
||||
}
|
||||
// translation and remaining parts
|
||||
res.matrix().template topRightCorner<Dim, 1>() = -res.matrix().template topLeftCorner<Dim, Dim>() * translation();
|
||||
res.matrix().template topRightCorner<Dim, 1>().noalias() =
|
||||
-res.matrix().template topLeftCorner<Dim, Dim>() * translation();
|
||||
res.makeAffine(); // we do need this, because in the beginning res is uninitialized
|
||||
}
|
||||
return res;
|
||||
@ -1432,7 +1433,7 @@ struct transform_transform_product_impl<Transform<Scalar, Dim, LhsMode, LhsOptio
|
||||
typedef Transform<Scalar, Dim, ResultMode, LhsOptions> ResultType;
|
||||
static EIGEN_DEVICE_FUNC ResultType run(const Lhs& lhs, const Rhs& rhs) {
|
||||
ResultType res;
|
||||
res.linear() = lhs.linear() * rhs.linear();
|
||||
res.linear().noalias() = lhs.linear() * rhs.linear();
|
||||
res.translation() = lhs.linear() * rhs.translation() + lhs.translation();
|
||||
res.makeAffine();
|
||||
return res;
|
||||
|
@ -717,7 +717,7 @@ void FullPivLU<MatrixType_, PermutationIndex_>::_solve_impl(const RhsType& rhs,
|
||||
|
||||
// Step 2
|
||||
m_lu.topLeftCorner(smalldim, smalldim).template triangularView<UnitLower>().solveInPlace(c.topRows(smalldim));
|
||||
if (rows > cols) c.bottomRows(rows - cols) -= m_lu.bottomRows(rows - cols) * c.topRows(cols);
|
||||
if (rows > cols) c.bottomRows(rows - cols).noalias() -= m_lu.bottomRows(rows - cols) * c.topRows(cols);
|
||||
|
||||
// Step 3
|
||||
m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
|
||||
|
@ -379,7 +379,7 @@ void SVDBase<Derived>::_solve_impl(const RhsType& rhs, DstType& dst) const {
|
||||
Index l_rank = rank();
|
||||
tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs;
|
||||
tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
|
||||
dst = m_matrixV.leftCols(l_rank) * tmp;
|
||||
dst.noalias() = m_matrixV.leftCols(l_rank) * tmp;
|
||||
}
|
||||
|
||||
template <typename Derived>
|
||||
|
@ -172,7 +172,7 @@ void upperbidiagonalization_blocked_helper(
|
||||
// 1 - update the k-th column of A
|
||||
SubColumnType v_k = A.col(k).tail(remainingRows);
|
||||
v_k -= V_k1 * Y.row(k).head(k).adjoint();
|
||||
if (k) v_k -= X_k1 * A.col(k).head(k);
|
||||
if (k) v_k.noalias() -= X_k1 * A.col(k).head(k);
|
||||
|
||||
// 2 - construct left Householder transform in-place
|
||||
v_k.makeHouseholderInPlace(tau_v, diagonal[k]);
|
||||
@ -203,7 +203,7 @@ void upperbidiagonalization_blocked_helper(
|
||||
SubRowType u_k(A.row(k).tail(remainingCols));
|
||||
u_k = u_k.conjugate();
|
||||
{
|
||||
u_k -= Y_k * A.row(k).head(k + 1).adjoint();
|
||||
u_k.noalias() -= Y_k * A.row(k).head(k + 1).adjoint();
|
||||
if (k) u_k -= U_k1.adjoint() * X.row(k).head(k).adjoint();
|
||||
}
|
||||
|
||||
|
@ -268,7 +268,7 @@ LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType, Scalar>::minimiz
|
||||
|
||||
/* compute the scaled predicted reduction and */
|
||||
/* the scaled directional derivative. */
|
||||
wa3 = fjac.template triangularView<Upper>() * (qrfac.colsPermutation().inverse() * wa1);
|
||||
wa3.noalias() = fjac.template triangularView<Upper>() * (qrfac.colsPermutation().inverse() * wa1);
|
||||
temp1 = numext::abs2(wa3.stableNorm() / fnorm);
|
||||
temp2 = numext::abs2(sqrt(par) * pnorm / fnorm);
|
||||
prered = temp1 + temp2 / Scalar(.5);
|
||||
|
Loading…
x
Reference in New Issue
Block a user