mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Added benchmarks for fp16
This commit is contained in:
parent
2cd32cad27
commit
002824e32d
@ -1,8 +1,12 @@
|
||||
Each benchmark comes in 2 flavors: one that runs on CPU, and one that runs on GPU.
|
||||
|
||||
To compile the CPU benchmarks, simply call:
|
||||
To compile the floating point CPU benchmarks, simply call:
|
||||
g++ tensor_benchmarks_cpu.cc benchmark_main.cc -I ../../ -std=c++11 -O3 -DNDEBUG -pthread -mavx -o benchmarks_cpu
|
||||
|
||||
To compile the GPU benchmarks, simply call:
|
||||
To compile the floating point GPU benchmarks, simply call:
|
||||
nvcc tensor_benchmarks_gpu.cu benchmark_main.cc -I ../../ -std=c++11 -O2 -DNDEBUG -arch compute_35 -o benchmarks_gpu
|
||||
|
||||
|
||||
To compile the half float GPU benchmarks, simply call the command line below. You'll need a recent GPU that supports compute capability 5.3 or higher to run them and nvcc 7.5 or higher to compile the code.
|
||||
nvcc tensor_benchmarks_fp16_gpu.cu benchmark_main.cc -I ../../ -std=c++11 -O2 -DNDEBUG -arch compute_53 -o benchmarks_gpu
|
||||
|
||||
|
76
bench/tensors/tensor_benchmarks_fp16_gpu.cu
Normal file
76
bench/tensors/tensor_benchmarks_fp16_gpu.cu
Normal file
@ -0,0 +1,76 @@
|
||||
#define EIGEN_USE_GPU
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <iostream>
|
||||
|
||||
#include "tensor_benchmarks.h"
|
||||
|
||||
// Simple functions
|
||||
#define BM_FuncGPU(FUNC) \
|
||||
static void BM_##FUNC(int iters, int N) { \
|
||||
StopBenchmarkTiming(); \
|
||||
Eigen::CudaStreamDevice stream; \
|
||||
Eigen::GpuDevice device(&stream); \
|
||||
BenchmarkSuite<Eigen::GpuDevice, half> suite(device, N); \
|
||||
cudaDeviceSynchronize(); \
|
||||
suite.FUNC(iters); \
|
||||
} \
|
||||
BENCHMARK_RANGE(BM_##FUNC, 10, 5000);
|
||||
|
||||
BM_FuncGPU(memcpy);
|
||||
//BM_FuncGPU(typeCasting);
|
||||
//BM_FuncGPU(random);
|
||||
BM_FuncGPU(slicing);
|
||||
BM_FuncGPU(rowChip);
|
||||
BM_FuncGPU(colChip);
|
||||
BM_FuncGPU(shuffling);
|
||||
BM_FuncGPU(padding);
|
||||
BM_FuncGPU(striding);
|
||||
BM_FuncGPU(broadcasting);
|
||||
//BM_FuncGPU(coeffWiseOp);
|
||||
//BM_FuncGPU(algebraicFunc);
|
||||
//BM_FuncGPU(transcendentalFunc);
|
||||
BM_FuncGPU(rowReduction);
|
||||
BM_FuncGPU(colReduction);
|
||||
|
||||
|
||||
// Contractions
|
||||
#define BM_FuncWithInputDimsGPU(FUNC, D1, D2, D3) \
|
||||
static void BM_##FUNC##_##D1##x##D2##x##D3(int iters, int N) { \
|
||||
StopBenchmarkTiming(); \
|
||||
Eigen::CudaStreamDevice stream; \
|
||||
Eigen::GpuDevice device(&stream); \
|
||||
BenchmarkSuite<Eigen::GpuDevice, half> suite(device, D1, D2, D3); \
|
||||
cudaDeviceSynchronize(); \
|
||||
suite.FUNC(iters); \
|
||||
} \
|
||||
BENCHMARK_RANGE(BM_##FUNC##_##D1##x##D2##x##D3, 10, 5000);
|
||||
|
||||
|
||||
/*BM_FuncWithInputDimsGPU(contraction, N, N, N);
|
||||
BM_FuncWithInputDimsGPU(contraction, 64, N, N);
|
||||
BM_FuncWithInputDimsGPU(contraction, N, 64, N);
|
||||
BM_FuncWithInputDimsGPU(contraction, N, N, 64);
|
||||
*/
|
||||
|
||||
// Convolutions
|
||||
#define BM_FuncWithKernelDimsGPU(FUNC, DIM1, DIM2) \
|
||||
static void BM_##FUNC##_##DIM1##x##DIM2(int iters, int N) { \
|
||||
StopBenchmarkTiming(); \
|
||||
Eigen::CudaStreamDevice stream; \
|
||||
Eigen::GpuDevice device(&stream); \
|
||||
BenchmarkSuite<Eigen::GpuDevice, half> suite(device, N); \
|
||||
cudaDeviceSynchronize(); \
|
||||
suite.FUNC(iters, DIM1, DIM2); \
|
||||
} \
|
||||
BENCHMARK_RANGE(BM_##FUNC##_##DIM1##x##DIM2, 128, 5000);
|
||||
|
||||
/*
|
||||
BM_FuncWithKernelDimsGPU(convolution, 7, 1);
|
||||
BM_FuncWithKernelDimsGPU(convolution, 1, 7);
|
||||
BM_FuncWithKernelDimsGPU(convolution, 7, 4);
|
||||
BM_FuncWithKernelDimsGPU(convolution, 4, 7);
|
||||
BM_FuncWithKernelDimsGPU(convolution, 7, 64);
|
||||
BM_FuncWithKernelDimsGPU(convolution, 64, 7);
|
||||
*/
|
Loading…
Reference in New Issue
Block a user