CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
// This file is part of Eigen, a lightweight C++ template library
|
|
|
|
// for linear algebra.
|
|
|
|
//
|
2013-11-16 07:03:23 +08:00
|
|
|
// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
//
|
|
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
|
|
|
|
#include "main.h"
|
|
|
|
|
|
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
#include <Eigen/CXX11/TensorSymmetry>
|
|
|
|
|
|
|
|
#include <map>
|
|
|
|
#include <set>
|
|
|
|
|
|
|
|
using Eigen::Tensor;
|
|
|
|
using Eigen::SGroup;
|
|
|
|
using Eigen::DynamicSGroup;
|
|
|
|
using Eigen::StaticSGroup;
|
|
|
|
using Eigen::Symmetry;
|
|
|
|
using Eigen::AntiSymmetry;
|
|
|
|
using Eigen::Hermiticity;
|
|
|
|
using Eigen::AntiHermiticity;
|
|
|
|
|
|
|
|
using Eigen::NegationFlag;
|
|
|
|
using Eigen::ConjugationFlag;
|
|
|
|
using Eigen::GlobalZeroFlag;
|
|
|
|
using Eigen::GlobalRealFlag;
|
|
|
|
using Eigen::GlobalImagFlag;
|
|
|
|
|
|
|
|
// helper function to determine if the compiler intantiated a static
|
|
|
|
// or dynamic symmetry group
|
unsupported/TensorSymmetry: make symgroup construction autodetect number of indices
When constructing a symmetry group, make the code automatically detect
the number of indices required from the indices of the group's
generators. Also, allow the symmetry group to be applied to lists of
indices that are larger than the number of indices of the symmetry
group.
Before:
SGroup<4, Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
After:
SGroup<Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
group.apply<SomeOp, int>(std::array<int,5>{{0, 1, 2, 3, 4}}, 0);
This should make the symmetry group easier to use - especially if one
wants to reuse the same symmetry group for different tensors of maybe
different rank.
static/runtime asserts remain for the case where the length of the
index list to which a symmetry group is to be applied is too small.
2014-06-05 02:27:42 +08:00
|
|
|
template<typename... Sym>
|
|
|
|
bool isDynGroup(StaticSGroup<Sym...> const& dummy)
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
{
|
|
|
|
(void)dummy;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool isDynGroup(DynamicSGroup const& dummy)
|
|
|
|
{
|
|
|
|
(void)dummy;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// helper class for checking that the symmetry groups are correct
|
|
|
|
struct checkIdx {
|
|
|
|
template<typename ArrType>
|
|
|
|
static inline int doCheck_(ArrType e, int flags, int dummy, std::set<uint64_t>& found, std::map<uint64_t, int> const& expected)
|
|
|
|
{
|
|
|
|
// use decimal representation of value
|
|
|
|
uint64_t value = e[0];
|
|
|
|
for (std::size_t i = 1; i < e.size(); i++)
|
|
|
|
value = value * 10 + e[i];
|
|
|
|
|
|
|
|
// we want to make sure that we find each element
|
|
|
|
auto it = expected.find(value);
|
|
|
|
VERIFY((it != expected.end()));
|
|
|
|
VERIFY_IS_EQUAL(it->second, flags);
|
|
|
|
|
|
|
|
// we want to make sure we only have each element once;
|
|
|
|
// set::insert returns true for the second part of the pair
|
|
|
|
// if the element was really inserted and not already there
|
|
|
|
auto p = found.insert(value);
|
|
|
|
VERIFY((p.second));
|
|
|
|
|
|
|
|
return dummy;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int run(std::vector<int> e, int flags, int dummy, std::set<uint64_t>& found, std::map<uint64_t, int> const& expected)
|
|
|
|
{
|
|
|
|
return doCheck_(e, flags, dummy, found, expected);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<std::size_t N>
|
|
|
|
static inline int run(std::array<int, N> e, int flags, int dummy, std::set<uint64_t>& found, std::map<uint64_t, int> const& expected)
|
|
|
|
{
|
|
|
|
return doCheck_(e, flags, dummy, found, expected);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static void test_symgroups_static()
|
|
|
|
{
|
|
|
|
std::array<int, 7> identity{{0,1,2,3,4,5,6}};
|
|
|
|
|
|
|
|
// Simple static symmetry group
|
unsupported/TensorSymmetry: make symgroup construction autodetect number of indices
When constructing a symmetry group, make the code automatically detect
the number of indices required from the indices of the group's
generators. Also, allow the symmetry group to be applied to lists of
indices that are larger than the number of indices of the symmetry
group.
Before:
SGroup<4, Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
After:
SGroup<Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
group.apply<SomeOp, int>(std::array<int,5>{{0, 1, 2, 3, 4}}, 0);
This should make the symmetry group easier to use - especially if one
wants to reuse the same symmetry group for different tensors of maybe
different rank.
static/runtime asserts remain for the case where the length of the
index list to which a symmetry group is to be applied is too small.
2014-06-05 02:27:42 +08:00
|
|
|
StaticSGroup<
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
AntiSymmetry<0,1>,
|
|
|
|
Hermiticity<0,2>
|
|
|
|
> group;
|
|
|
|
|
|
|
|
std::set<uint64_t> found;
|
|
|
|
std::map<uint64_t, int> expected;
|
|
|
|
expected[ 123456] = 0;
|
|
|
|
expected[1023456] = NegationFlag;
|
|
|
|
expected[2103456] = ConjugationFlag;
|
|
|
|
expected[1203456] = ConjugationFlag | NegationFlag;
|
|
|
|
expected[2013456] = ConjugationFlag | NegationFlag;
|
|
|
|
expected[ 213456] = ConjugationFlag;
|
|
|
|
|
|
|
|
VERIFY_IS_EQUAL(group.size(), 6u);
|
|
|
|
VERIFY_IS_EQUAL(group.globalFlags(), GlobalImagFlag);
|
|
|
|
group.apply<checkIdx, int>(identity, 0, found, expected);
|
|
|
|
VERIFY_IS_EQUAL(found.size(), 6u);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_symgroups_dynamic()
|
|
|
|
{
|
|
|
|
std::vector<int> identity;
|
|
|
|
for (int i = 0; i <= 6; i++)
|
|
|
|
identity.push_back(i);
|
|
|
|
|
|
|
|
// Simple dynamic symmetry group
|
unsupported/TensorSymmetry: make symgroup construction autodetect number of indices
When constructing a symmetry group, make the code automatically detect
the number of indices required from the indices of the group's
generators. Also, allow the symmetry group to be applied to lists of
indices that are larger than the number of indices of the symmetry
group.
Before:
SGroup<4, Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
After:
SGroup<Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
group.apply<SomeOp, int>(std::array<int,5>{{0, 1, 2, 3, 4}}, 0);
This should make the symmetry group easier to use - especially if one
wants to reuse the same symmetry group for different tensors of maybe
different rank.
static/runtime asserts remain for the case where the length of the
index list to which a symmetry group is to be applied is too small.
2014-06-05 02:27:42 +08:00
|
|
|
DynamicSGroup group;
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
group.add(0,1,NegationFlag);
|
|
|
|
group.add(0,2,ConjugationFlag);
|
|
|
|
|
|
|
|
VERIFY_IS_EQUAL(group.size(), 6u);
|
|
|
|
VERIFY_IS_EQUAL(group.globalFlags(), GlobalImagFlag);
|
|
|
|
|
|
|
|
std::set<uint64_t> found;
|
|
|
|
std::map<uint64_t, int> expected;
|
|
|
|
expected[ 123456] = 0;
|
|
|
|
expected[1023456] = NegationFlag;
|
|
|
|
expected[2103456] = ConjugationFlag;
|
|
|
|
expected[1203456] = ConjugationFlag | NegationFlag;
|
|
|
|
expected[2013456] = ConjugationFlag | NegationFlag;
|
|
|
|
expected[ 213456] = ConjugationFlag;
|
|
|
|
|
|
|
|
VERIFY_IS_EQUAL(group.size(), 6u);
|
|
|
|
VERIFY_IS_EQUAL(group.globalFlags(), GlobalImagFlag);
|
|
|
|
group.apply<checkIdx, int>(identity, 0, found, expected);
|
|
|
|
VERIFY_IS_EQUAL(found.size(), 6u);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_symgroups_selection()
|
|
|
|
{
|
|
|
|
std::array<int, 7> identity7{{0,1,2,3,4,5,6}};
|
|
|
|
std::array<int, 10> identity10{{0,1,2,3,4,5,6,7,8,9}};
|
|
|
|
|
|
|
|
{
|
|
|
|
// Do the same test as in test_symgroups_static but
|
|
|
|
// require selection via SGroup
|
unsupported/TensorSymmetry: make symgroup construction autodetect number of indices
When constructing a symmetry group, make the code automatically detect
the number of indices required from the indices of the group's
generators. Also, allow the symmetry group to be applied to lists of
indices that are larger than the number of indices of the symmetry
group.
Before:
SGroup<4, Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
After:
SGroup<Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
group.apply<SomeOp, int>(std::array<int,5>{{0, 1, 2, 3, 4}}, 0);
This should make the symmetry group easier to use - especially if one
wants to reuse the same symmetry group for different tensors of maybe
different rank.
static/runtime asserts remain for the case where the length of the
index list to which a symmetry group is to be applied is too small.
2014-06-05 02:27:42 +08:00
|
|
|
SGroup<
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
AntiSymmetry<0,1>,
|
|
|
|
Hermiticity<0,2>
|
|
|
|
> group;
|
|
|
|
|
|
|
|
std::set<uint64_t> found;
|
|
|
|
std::map<uint64_t, int> expected;
|
|
|
|
expected[ 123456] = 0;
|
|
|
|
expected[1023456] = NegationFlag;
|
|
|
|
expected[2103456] = ConjugationFlag;
|
|
|
|
expected[1203456] = ConjugationFlag | NegationFlag;
|
|
|
|
expected[2013456] = ConjugationFlag | NegationFlag;
|
|
|
|
expected[ 213456] = ConjugationFlag;
|
|
|
|
|
|
|
|
VERIFY(!isDynGroup(group));
|
|
|
|
VERIFY_IS_EQUAL(group.size(), 6u);
|
|
|
|
VERIFY_IS_EQUAL(group.globalFlags(), GlobalImagFlag);
|
|
|
|
group.apply<checkIdx, int>(identity7, 0, found, expected);
|
|
|
|
VERIFY_IS_EQUAL(found.size(), 6u);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// simple factorizing group: 5 generators, 2^5 = 32 elements
|
|
|
|
// selection should make this dynamic, although static group
|
|
|
|
// can still be reasonably generated
|
unsupported/TensorSymmetry: make symgroup construction autodetect number of indices
When constructing a symmetry group, make the code automatically detect
the number of indices required from the indices of the group's
generators. Also, allow the symmetry group to be applied to lists of
indices that are larger than the number of indices of the symmetry
group.
Before:
SGroup<4, Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
After:
SGroup<Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
group.apply<SomeOp, int>(std::array<int,5>{{0, 1, 2, 3, 4}}, 0);
This should make the symmetry group easier to use - especially if one
wants to reuse the same symmetry group for different tensors of maybe
different rank.
static/runtime asserts remain for the case where the length of the
index list to which a symmetry group is to be applied is too small.
2014-06-05 02:27:42 +08:00
|
|
|
SGroup<
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
Symmetry<0,1>,
|
|
|
|
Symmetry<2,3>,
|
|
|
|
Symmetry<4,5>,
|
|
|
|
Symmetry<6,7>,
|
|
|
|
Symmetry<8,9>
|
|
|
|
> group;
|
|
|
|
|
|
|
|
std::set<uint64_t> found;
|
|
|
|
std::map<uint64_t, int> expected;
|
|
|
|
expected[ 123456789] = 0; expected[ 123456798] = 0; expected[ 123457689] = 0; expected[ 123457698] = 0;
|
|
|
|
expected[ 123546789] = 0; expected[ 123546798] = 0; expected[ 123547689] = 0; expected[ 123547698] = 0;
|
|
|
|
expected[ 132456789] = 0; expected[ 132456798] = 0; expected[ 132457689] = 0; expected[ 132457698] = 0;
|
|
|
|
expected[ 132546789] = 0; expected[ 132546798] = 0; expected[ 132547689] = 0; expected[ 132547698] = 0;
|
|
|
|
expected[1023456789] = 0; expected[1023456798] = 0; expected[1023457689] = 0; expected[1023457698] = 0;
|
|
|
|
expected[1023546789] = 0; expected[1023546798] = 0; expected[1023547689] = 0; expected[1023547698] = 0;
|
|
|
|
expected[1032456789] = 0; expected[1032456798] = 0; expected[1032457689] = 0; expected[1032457698] = 0;
|
|
|
|
expected[1032546789] = 0; expected[1032546798] = 0; expected[1032547689] = 0; expected[1032547698] = 0;
|
|
|
|
|
|
|
|
VERIFY(isDynGroup(group));
|
|
|
|
VERIFY_IS_EQUAL(group.size(), 32u);
|
|
|
|
VERIFY_IS_EQUAL(group.globalFlags(), 0);
|
|
|
|
group.apply<checkIdx, int>(identity10, 0, found, expected);
|
|
|
|
VERIFY_IS_EQUAL(found.size(), 32u);
|
|
|
|
|
|
|
|
// no verify that we could also generate a static group
|
|
|
|
// with these generators
|
|
|
|
found.clear();
|
unsupported/TensorSymmetry: make symgroup construction autodetect number of indices
When constructing a symmetry group, make the code automatically detect
the number of indices required from the indices of the group's
generators. Also, allow the symmetry group to be applied to lists of
indices that are larger than the number of indices of the symmetry
group.
Before:
SGroup<4, Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
After:
SGroup<Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
group.apply<SomeOp, int>(std::array<int,5>{{0, 1, 2, 3, 4}}, 0);
This should make the symmetry group easier to use - especially if one
wants to reuse the same symmetry group for different tensors of maybe
different rank.
static/runtime asserts remain for the case where the length of the
index list to which a symmetry group is to be applied is too small.
2014-06-05 02:27:42 +08:00
|
|
|
StaticSGroup<
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
Symmetry<0,1>,
|
|
|
|
Symmetry<2,3>,
|
|
|
|
Symmetry<4,5>,
|
|
|
|
Symmetry<6,7>,
|
|
|
|
Symmetry<8,9>
|
|
|
|
> group_static;
|
|
|
|
VERIFY_IS_EQUAL(group_static.size(), 32u);
|
|
|
|
VERIFY_IS_EQUAL(group_static.globalFlags(), 0);
|
|
|
|
group_static.apply<checkIdx, int>(identity10, 0, found, expected);
|
|
|
|
VERIFY_IS_EQUAL(found.size(), 32u);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// try to create a HUGE group
|
unsupported/TensorSymmetry: make symgroup construction autodetect number of indices
When constructing a symmetry group, make the code automatically detect
the number of indices required from the indices of the group's
generators. Also, allow the symmetry group to be applied to lists of
indices that are larger than the number of indices of the symmetry
group.
Before:
SGroup<4, Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
After:
SGroup<Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
group.apply<SomeOp, int>(std::array<int,5>{{0, 1, 2, 3, 4}}, 0);
This should make the symmetry group easier to use - especially if one
wants to reuse the same symmetry group for different tensors of maybe
different rank.
static/runtime asserts remain for the case where the length of the
index list to which a symmetry group is to be applied is too small.
2014-06-05 02:27:42 +08:00
|
|
|
SGroup<
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
Symmetry<0,1>,
|
|
|
|
Symmetry<1,2>,
|
|
|
|
Symmetry<2,3>,
|
|
|
|
Symmetry<3,4>,
|
|
|
|
Symmetry<4,5>,
|
|
|
|
Symmetry<5,6>
|
|
|
|
> group;
|
|
|
|
|
|
|
|
std::set<uint64_t> found;
|
|
|
|
uint64_t pre_expected[5040] = {
|
|
|
|
123456, 1023456, 213456, 2013456, 1203456, 2103456, 132456, 1032456, 312456, 3012456, 1302456, 3102456,
|
|
|
|
231456, 2031456, 321456, 3021456, 2301456, 3201456, 1230456, 2130456, 1320456, 3120456, 2310456, 3210456,
|
|
|
|
124356, 1024356, 214356, 2014356, 1204356, 2104356, 142356, 1042356, 412356, 4012356, 1402356, 4102356,
|
|
|
|
241356, 2041356, 421356, 4021356, 2401356, 4201356, 1240356, 2140356, 1420356, 4120356, 2410356, 4210356,
|
|
|
|
134256, 1034256, 314256, 3014256, 1304256, 3104256, 143256, 1043256, 413256, 4013256, 1403256, 4103256,
|
|
|
|
341256, 3041256, 431256, 4031256, 3401256, 4301256, 1340256, 3140256, 1430256, 4130256, 3410256, 4310256,
|
|
|
|
234156, 2034156, 324156, 3024156, 2304156, 3204156, 243156, 2043156, 423156, 4023156, 2403156, 4203156,
|
|
|
|
342156, 3042156, 432156, 4032156, 3402156, 4302156, 2340156, 3240156, 2430156, 4230156, 3420156, 4320156,
|
|
|
|
1234056, 2134056, 1324056, 3124056, 2314056, 3214056, 1243056, 2143056, 1423056, 4123056, 2413056, 4213056,
|
|
|
|
1342056, 3142056, 1432056, 4132056, 3412056, 4312056, 2341056, 3241056, 2431056, 4231056, 3421056, 4321056,
|
|
|
|
123546, 1023546, 213546, 2013546, 1203546, 2103546, 132546, 1032546, 312546, 3012546, 1302546, 3102546,
|
|
|
|
231546, 2031546, 321546, 3021546, 2301546, 3201546, 1230546, 2130546, 1320546, 3120546, 2310546, 3210546,
|
|
|
|
125346, 1025346, 215346, 2015346, 1205346, 2105346, 152346, 1052346, 512346, 5012346, 1502346, 5102346,
|
|
|
|
251346, 2051346, 521346, 5021346, 2501346, 5201346, 1250346, 2150346, 1520346, 5120346, 2510346, 5210346,
|
|
|
|
135246, 1035246, 315246, 3015246, 1305246, 3105246, 153246, 1053246, 513246, 5013246, 1503246, 5103246,
|
|
|
|
351246, 3051246, 531246, 5031246, 3501246, 5301246, 1350246, 3150246, 1530246, 5130246, 3510246, 5310246,
|
|
|
|
235146, 2035146, 325146, 3025146, 2305146, 3205146, 253146, 2053146, 523146, 5023146, 2503146, 5203146,
|
|
|
|
352146, 3052146, 532146, 5032146, 3502146, 5302146, 2350146, 3250146, 2530146, 5230146, 3520146, 5320146,
|
|
|
|
1235046, 2135046, 1325046, 3125046, 2315046, 3215046, 1253046, 2153046, 1523046, 5123046, 2513046, 5213046,
|
|
|
|
1352046, 3152046, 1532046, 5132046, 3512046, 5312046, 2351046, 3251046, 2531046, 5231046, 3521046, 5321046,
|
|
|
|
124536, 1024536, 214536, 2014536, 1204536, 2104536, 142536, 1042536, 412536, 4012536, 1402536, 4102536,
|
|
|
|
241536, 2041536, 421536, 4021536, 2401536, 4201536, 1240536, 2140536, 1420536, 4120536, 2410536, 4210536,
|
|
|
|
125436, 1025436, 215436, 2015436, 1205436, 2105436, 152436, 1052436, 512436, 5012436, 1502436, 5102436,
|
|
|
|
251436, 2051436, 521436, 5021436, 2501436, 5201436, 1250436, 2150436, 1520436, 5120436, 2510436, 5210436,
|
|
|
|
145236, 1045236, 415236, 4015236, 1405236, 4105236, 154236, 1054236, 514236, 5014236, 1504236, 5104236,
|
|
|
|
451236, 4051236, 541236, 5041236, 4501236, 5401236, 1450236, 4150236, 1540236, 5140236, 4510236, 5410236,
|
|
|
|
245136, 2045136, 425136, 4025136, 2405136, 4205136, 254136, 2054136, 524136, 5024136, 2504136, 5204136,
|
|
|
|
452136, 4052136, 542136, 5042136, 4502136, 5402136, 2450136, 4250136, 2540136, 5240136, 4520136, 5420136,
|
|
|
|
1245036, 2145036, 1425036, 4125036, 2415036, 4215036, 1254036, 2154036, 1524036, 5124036, 2514036, 5214036,
|
|
|
|
1452036, 4152036, 1542036, 5142036, 4512036, 5412036, 2451036, 4251036, 2541036, 5241036, 4521036, 5421036,
|
|
|
|
134526, 1034526, 314526, 3014526, 1304526, 3104526, 143526, 1043526, 413526, 4013526, 1403526, 4103526,
|
|
|
|
341526, 3041526, 431526, 4031526, 3401526, 4301526, 1340526, 3140526, 1430526, 4130526, 3410526, 4310526,
|
|
|
|
135426, 1035426, 315426, 3015426, 1305426, 3105426, 153426, 1053426, 513426, 5013426, 1503426, 5103426,
|
|
|
|
351426, 3051426, 531426, 5031426, 3501426, 5301426, 1350426, 3150426, 1530426, 5130426, 3510426, 5310426,
|
|
|
|
145326, 1045326, 415326, 4015326, 1405326, 4105326, 154326, 1054326, 514326, 5014326, 1504326, 5104326,
|
|
|
|
451326, 4051326, 541326, 5041326, 4501326, 5401326, 1450326, 4150326, 1540326, 5140326, 4510326, 5410326,
|
|
|
|
345126, 3045126, 435126, 4035126, 3405126, 4305126, 354126, 3054126, 534126, 5034126, 3504126, 5304126,
|
|
|
|
453126, 4053126, 543126, 5043126, 4503126, 5403126, 3450126, 4350126, 3540126, 5340126, 4530126, 5430126,
|
|
|
|
1345026, 3145026, 1435026, 4135026, 3415026, 4315026, 1354026, 3154026, 1534026, 5134026, 3514026, 5314026,
|
|
|
|
1453026, 4153026, 1543026, 5143026, 4513026, 5413026, 3451026, 4351026, 3541026, 5341026, 4531026, 5431026,
|
|
|
|
234516, 2034516, 324516, 3024516, 2304516, 3204516, 243516, 2043516, 423516, 4023516, 2403516, 4203516,
|
|
|
|
342516, 3042516, 432516, 4032516, 3402516, 4302516, 2340516, 3240516, 2430516, 4230516, 3420516, 4320516,
|
|
|
|
235416, 2035416, 325416, 3025416, 2305416, 3205416, 253416, 2053416, 523416, 5023416, 2503416, 5203416,
|
|
|
|
352416, 3052416, 532416, 5032416, 3502416, 5302416, 2350416, 3250416, 2530416, 5230416, 3520416, 5320416,
|
|
|
|
245316, 2045316, 425316, 4025316, 2405316, 4205316, 254316, 2054316, 524316, 5024316, 2504316, 5204316,
|
|
|
|
452316, 4052316, 542316, 5042316, 4502316, 5402316, 2450316, 4250316, 2540316, 5240316, 4520316, 5420316,
|
|
|
|
345216, 3045216, 435216, 4035216, 3405216, 4305216, 354216, 3054216, 534216, 5034216, 3504216, 5304216,
|
|
|
|
453216, 4053216, 543216, 5043216, 4503216, 5403216, 3450216, 4350216, 3540216, 5340216, 4530216, 5430216,
|
|
|
|
2345016, 3245016, 2435016, 4235016, 3425016, 4325016, 2354016, 3254016, 2534016, 5234016, 3524016, 5324016,
|
|
|
|
2453016, 4253016, 2543016, 5243016, 4523016, 5423016, 3452016, 4352016, 3542016, 5342016, 4532016, 5432016,
|
|
|
|
1234506, 2134506, 1324506, 3124506, 2314506, 3214506, 1243506, 2143506, 1423506, 4123506, 2413506, 4213506,
|
|
|
|
1342506, 3142506, 1432506, 4132506, 3412506, 4312506, 2341506, 3241506, 2431506, 4231506, 3421506, 4321506,
|
|
|
|
1235406, 2135406, 1325406, 3125406, 2315406, 3215406, 1253406, 2153406, 1523406, 5123406, 2513406, 5213406,
|
|
|
|
1352406, 3152406, 1532406, 5132406, 3512406, 5312406, 2351406, 3251406, 2531406, 5231406, 3521406, 5321406,
|
|
|
|
1245306, 2145306, 1425306, 4125306, 2415306, 4215306, 1254306, 2154306, 1524306, 5124306, 2514306, 5214306,
|
|
|
|
1452306, 4152306, 1542306, 5142306, 4512306, 5412306, 2451306, 4251306, 2541306, 5241306, 4521306, 5421306,
|
|
|
|
1345206, 3145206, 1435206, 4135206, 3415206, 4315206, 1354206, 3154206, 1534206, 5134206, 3514206, 5314206,
|
|
|
|
1453206, 4153206, 1543206, 5143206, 4513206, 5413206, 3451206, 4351206, 3541206, 5341206, 4531206, 5431206,
|
|
|
|
2345106, 3245106, 2435106, 4235106, 3425106, 4325106, 2354106, 3254106, 2534106, 5234106, 3524106, 5324106,
|
|
|
|
2453106, 4253106, 2543106, 5243106, 4523106, 5423106, 3452106, 4352106, 3542106, 5342106, 4532106, 5432106,
|
|
|
|
123465, 1023465, 213465, 2013465, 1203465, 2103465, 132465, 1032465, 312465, 3012465, 1302465, 3102465,
|
|
|
|
231465, 2031465, 321465, 3021465, 2301465, 3201465, 1230465, 2130465, 1320465, 3120465, 2310465, 3210465,
|
|
|
|
124365, 1024365, 214365, 2014365, 1204365, 2104365, 142365, 1042365, 412365, 4012365, 1402365, 4102365,
|
|
|
|
241365, 2041365, 421365, 4021365, 2401365, 4201365, 1240365, 2140365, 1420365, 4120365, 2410365, 4210365,
|
|
|
|
134265, 1034265, 314265, 3014265, 1304265, 3104265, 143265, 1043265, 413265, 4013265, 1403265, 4103265,
|
|
|
|
341265, 3041265, 431265, 4031265, 3401265, 4301265, 1340265, 3140265, 1430265, 4130265, 3410265, 4310265,
|
|
|
|
234165, 2034165, 324165, 3024165, 2304165, 3204165, 243165, 2043165, 423165, 4023165, 2403165, 4203165,
|
|
|
|
342165, 3042165, 432165, 4032165, 3402165, 4302165, 2340165, 3240165, 2430165, 4230165, 3420165, 4320165,
|
|
|
|
1234065, 2134065, 1324065, 3124065, 2314065, 3214065, 1243065, 2143065, 1423065, 4123065, 2413065, 4213065,
|
|
|
|
1342065, 3142065, 1432065, 4132065, 3412065, 4312065, 2341065, 3241065, 2431065, 4231065, 3421065, 4321065,
|
|
|
|
123645, 1023645, 213645, 2013645, 1203645, 2103645, 132645, 1032645, 312645, 3012645, 1302645, 3102645,
|
|
|
|
231645, 2031645, 321645, 3021645, 2301645, 3201645, 1230645, 2130645, 1320645, 3120645, 2310645, 3210645,
|
|
|
|
126345, 1026345, 216345, 2016345, 1206345, 2106345, 162345, 1062345, 612345, 6012345, 1602345, 6102345,
|
|
|
|
261345, 2061345, 621345, 6021345, 2601345, 6201345, 1260345, 2160345, 1620345, 6120345, 2610345, 6210345,
|
|
|
|
136245, 1036245, 316245, 3016245, 1306245, 3106245, 163245, 1063245, 613245, 6013245, 1603245, 6103245,
|
|
|
|
361245, 3061245, 631245, 6031245, 3601245, 6301245, 1360245, 3160245, 1630245, 6130245, 3610245, 6310245,
|
|
|
|
236145, 2036145, 326145, 3026145, 2306145, 3206145, 263145, 2063145, 623145, 6023145, 2603145, 6203145,
|
|
|
|
362145, 3062145, 632145, 6032145, 3602145, 6302145, 2360145, 3260145, 2630145, 6230145, 3620145, 6320145,
|
|
|
|
1236045, 2136045, 1326045, 3126045, 2316045, 3216045, 1263045, 2163045, 1623045, 6123045, 2613045, 6213045,
|
|
|
|
1362045, 3162045, 1632045, 6132045, 3612045, 6312045, 2361045, 3261045, 2631045, 6231045, 3621045, 6321045,
|
|
|
|
124635, 1024635, 214635, 2014635, 1204635, 2104635, 142635, 1042635, 412635, 4012635, 1402635, 4102635,
|
|
|
|
241635, 2041635, 421635, 4021635, 2401635, 4201635, 1240635, 2140635, 1420635, 4120635, 2410635, 4210635,
|
|
|
|
126435, 1026435, 216435, 2016435, 1206435, 2106435, 162435, 1062435, 612435, 6012435, 1602435, 6102435,
|
|
|
|
261435, 2061435, 621435, 6021435, 2601435, 6201435, 1260435, 2160435, 1620435, 6120435, 2610435, 6210435,
|
|
|
|
146235, 1046235, 416235, 4016235, 1406235, 4106235, 164235, 1064235, 614235, 6014235, 1604235, 6104235,
|
|
|
|
461235, 4061235, 641235, 6041235, 4601235, 6401235, 1460235, 4160235, 1640235, 6140235, 4610235, 6410235,
|
|
|
|
246135, 2046135, 426135, 4026135, 2406135, 4206135, 264135, 2064135, 624135, 6024135, 2604135, 6204135,
|
|
|
|
462135, 4062135, 642135, 6042135, 4602135, 6402135, 2460135, 4260135, 2640135, 6240135, 4620135, 6420135,
|
|
|
|
1246035, 2146035, 1426035, 4126035, 2416035, 4216035, 1264035, 2164035, 1624035, 6124035, 2614035, 6214035,
|
|
|
|
1462035, 4162035, 1642035, 6142035, 4612035, 6412035, 2461035, 4261035, 2641035, 6241035, 4621035, 6421035,
|
|
|
|
134625, 1034625, 314625, 3014625, 1304625, 3104625, 143625, 1043625, 413625, 4013625, 1403625, 4103625,
|
|
|
|
341625, 3041625, 431625, 4031625, 3401625, 4301625, 1340625, 3140625, 1430625, 4130625, 3410625, 4310625,
|
|
|
|
136425, 1036425, 316425, 3016425, 1306425, 3106425, 163425, 1063425, 613425, 6013425, 1603425, 6103425,
|
|
|
|
361425, 3061425, 631425, 6031425, 3601425, 6301425, 1360425, 3160425, 1630425, 6130425, 3610425, 6310425,
|
|
|
|
146325, 1046325, 416325, 4016325, 1406325, 4106325, 164325, 1064325, 614325, 6014325, 1604325, 6104325,
|
|
|
|
461325, 4061325, 641325, 6041325, 4601325, 6401325, 1460325, 4160325, 1640325, 6140325, 4610325, 6410325,
|
|
|
|
346125, 3046125, 436125, 4036125, 3406125, 4306125, 364125, 3064125, 634125, 6034125, 3604125, 6304125,
|
|
|
|
463125, 4063125, 643125, 6043125, 4603125, 6403125, 3460125, 4360125, 3640125, 6340125, 4630125, 6430125,
|
|
|
|
1346025, 3146025, 1436025, 4136025, 3416025, 4316025, 1364025, 3164025, 1634025, 6134025, 3614025, 6314025,
|
|
|
|
1463025, 4163025, 1643025, 6143025, 4613025, 6413025, 3461025, 4361025, 3641025, 6341025, 4631025, 6431025,
|
|
|
|
234615, 2034615, 324615, 3024615, 2304615, 3204615, 243615, 2043615, 423615, 4023615, 2403615, 4203615,
|
|
|
|
342615, 3042615, 432615, 4032615, 3402615, 4302615, 2340615, 3240615, 2430615, 4230615, 3420615, 4320615,
|
|
|
|
236415, 2036415, 326415, 3026415, 2306415, 3206415, 263415, 2063415, 623415, 6023415, 2603415, 6203415,
|
|
|
|
362415, 3062415, 632415, 6032415, 3602415, 6302415, 2360415, 3260415, 2630415, 6230415, 3620415, 6320415,
|
|
|
|
246315, 2046315, 426315, 4026315, 2406315, 4206315, 264315, 2064315, 624315, 6024315, 2604315, 6204315,
|
|
|
|
462315, 4062315, 642315, 6042315, 4602315, 6402315, 2460315, 4260315, 2640315, 6240315, 4620315, 6420315,
|
|
|
|
346215, 3046215, 436215, 4036215, 3406215, 4306215, 364215, 3064215, 634215, 6034215, 3604215, 6304215,
|
|
|
|
463215, 4063215, 643215, 6043215, 4603215, 6403215, 3460215, 4360215, 3640215, 6340215, 4630215, 6430215,
|
|
|
|
2346015, 3246015, 2436015, 4236015, 3426015, 4326015, 2364015, 3264015, 2634015, 6234015, 3624015, 6324015,
|
|
|
|
2463015, 4263015, 2643015, 6243015, 4623015, 6423015, 3462015, 4362015, 3642015, 6342015, 4632015, 6432015,
|
|
|
|
1234605, 2134605, 1324605, 3124605, 2314605, 3214605, 1243605, 2143605, 1423605, 4123605, 2413605, 4213605,
|
|
|
|
1342605, 3142605, 1432605, 4132605, 3412605, 4312605, 2341605, 3241605, 2431605, 4231605, 3421605, 4321605,
|
|
|
|
1236405, 2136405, 1326405, 3126405, 2316405, 3216405, 1263405, 2163405, 1623405, 6123405, 2613405, 6213405,
|
|
|
|
1362405, 3162405, 1632405, 6132405, 3612405, 6312405, 2361405, 3261405, 2631405, 6231405, 3621405, 6321405,
|
|
|
|
1246305, 2146305, 1426305, 4126305, 2416305, 4216305, 1264305, 2164305, 1624305, 6124305, 2614305, 6214305,
|
|
|
|
1462305, 4162305, 1642305, 6142305, 4612305, 6412305, 2461305, 4261305, 2641305, 6241305, 4621305, 6421305,
|
|
|
|
1346205, 3146205, 1436205, 4136205, 3416205, 4316205, 1364205, 3164205, 1634205, 6134205, 3614205, 6314205,
|
|
|
|
1463205, 4163205, 1643205, 6143205, 4613205, 6413205, 3461205, 4361205, 3641205, 6341205, 4631205, 6431205,
|
|
|
|
2346105, 3246105, 2436105, 4236105, 3426105, 4326105, 2364105, 3264105, 2634105, 6234105, 3624105, 6324105,
|
|
|
|
2463105, 4263105, 2643105, 6243105, 4623105, 6423105, 3462105, 4362105, 3642105, 6342105, 4632105, 6432105,
|
|
|
|
123564, 1023564, 213564, 2013564, 1203564, 2103564, 132564, 1032564, 312564, 3012564, 1302564, 3102564,
|
|
|
|
231564, 2031564, 321564, 3021564, 2301564, 3201564, 1230564, 2130564, 1320564, 3120564, 2310564, 3210564,
|
|
|
|
125364, 1025364, 215364, 2015364, 1205364, 2105364, 152364, 1052364, 512364, 5012364, 1502364, 5102364,
|
|
|
|
251364, 2051364, 521364, 5021364, 2501364, 5201364, 1250364, 2150364, 1520364, 5120364, 2510364, 5210364,
|
|
|
|
135264, 1035264, 315264, 3015264, 1305264, 3105264, 153264, 1053264, 513264, 5013264, 1503264, 5103264,
|
|
|
|
351264, 3051264, 531264, 5031264, 3501264, 5301264, 1350264, 3150264, 1530264, 5130264, 3510264, 5310264,
|
|
|
|
235164, 2035164, 325164, 3025164, 2305164, 3205164, 253164, 2053164, 523164, 5023164, 2503164, 5203164,
|
|
|
|
352164, 3052164, 532164, 5032164, 3502164, 5302164, 2350164, 3250164, 2530164, 5230164, 3520164, 5320164,
|
|
|
|
1235064, 2135064, 1325064, 3125064, 2315064, 3215064, 1253064, 2153064, 1523064, 5123064, 2513064, 5213064,
|
|
|
|
1352064, 3152064, 1532064, 5132064, 3512064, 5312064, 2351064, 3251064, 2531064, 5231064, 3521064, 5321064,
|
|
|
|
123654, 1023654, 213654, 2013654, 1203654, 2103654, 132654, 1032654, 312654, 3012654, 1302654, 3102654,
|
|
|
|
231654, 2031654, 321654, 3021654, 2301654, 3201654, 1230654, 2130654, 1320654, 3120654, 2310654, 3210654,
|
|
|
|
126354, 1026354, 216354, 2016354, 1206354, 2106354, 162354, 1062354, 612354, 6012354, 1602354, 6102354,
|
|
|
|
261354, 2061354, 621354, 6021354, 2601354, 6201354, 1260354, 2160354, 1620354, 6120354, 2610354, 6210354,
|
|
|
|
136254, 1036254, 316254, 3016254, 1306254, 3106254, 163254, 1063254, 613254, 6013254, 1603254, 6103254,
|
|
|
|
361254, 3061254, 631254, 6031254, 3601254, 6301254, 1360254, 3160254, 1630254, 6130254, 3610254, 6310254,
|
|
|
|
236154, 2036154, 326154, 3026154, 2306154, 3206154, 263154, 2063154, 623154, 6023154, 2603154, 6203154,
|
|
|
|
362154, 3062154, 632154, 6032154, 3602154, 6302154, 2360154, 3260154, 2630154, 6230154, 3620154, 6320154,
|
|
|
|
1236054, 2136054, 1326054, 3126054, 2316054, 3216054, 1263054, 2163054, 1623054, 6123054, 2613054, 6213054,
|
|
|
|
1362054, 3162054, 1632054, 6132054, 3612054, 6312054, 2361054, 3261054, 2631054, 6231054, 3621054, 6321054,
|
|
|
|
125634, 1025634, 215634, 2015634, 1205634, 2105634, 152634, 1052634, 512634, 5012634, 1502634, 5102634,
|
|
|
|
251634, 2051634, 521634, 5021634, 2501634, 5201634, 1250634, 2150634, 1520634, 5120634, 2510634, 5210634,
|
|
|
|
126534, 1026534, 216534, 2016534, 1206534, 2106534, 162534, 1062534, 612534, 6012534, 1602534, 6102534,
|
|
|
|
261534, 2061534, 621534, 6021534, 2601534, 6201534, 1260534, 2160534, 1620534, 6120534, 2610534, 6210534,
|
|
|
|
156234, 1056234, 516234, 5016234, 1506234, 5106234, 165234, 1065234, 615234, 6015234, 1605234, 6105234,
|
|
|
|
561234, 5061234, 651234, 6051234, 5601234, 6501234, 1560234, 5160234, 1650234, 6150234, 5610234, 6510234,
|
|
|
|
256134, 2056134, 526134, 5026134, 2506134, 5206134, 265134, 2065134, 625134, 6025134, 2605134, 6205134,
|
|
|
|
562134, 5062134, 652134, 6052134, 5602134, 6502134, 2560134, 5260134, 2650134, 6250134, 5620134, 6520134,
|
|
|
|
1256034, 2156034, 1526034, 5126034, 2516034, 5216034, 1265034, 2165034, 1625034, 6125034, 2615034, 6215034,
|
|
|
|
1562034, 5162034, 1652034, 6152034, 5612034, 6512034, 2561034, 5261034, 2651034, 6251034, 5621034, 6521034,
|
|
|
|
135624, 1035624, 315624, 3015624, 1305624, 3105624, 153624, 1053624, 513624, 5013624, 1503624, 5103624,
|
|
|
|
351624, 3051624, 531624, 5031624, 3501624, 5301624, 1350624, 3150624, 1530624, 5130624, 3510624, 5310624,
|
|
|
|
136524, 1036524, 316524, 3016524, 1306524, 3106524, 163524, 1063524, 613524, 6013524, 1603524, 6103524,
|
|
|
|
361524, 3061524, 631524, 6031524, 3601524, 6301524, 1360524, 3160524, 1630524, 6130524, 3610524, 6310524,
|
|
|
|
156324, 1056324, 516324, 5016324, 1506324, 5106324, 165324, 1065324, 615324, 6015324, 1605324, 6105324,
|
|
|
|
561324, 5061324, 651324, 6051324, 5601324, 6501324, 1560324, 5160324, 1650324, 6150324, 5610324, 6510324,
|
|
|
|
356124, 3056124, 536124, 5036124, 3506124, 5306124, 365124, 3065124, 635124, 6035124, 3605124, 6305124,
|
|
|
|
563124, 5063124, 653124, 6053124, 5603124, 6503124, 3560124, 5360124, 3650124, 6350124, 5630124, 6530124,
|
|
|
|
1356024, 3156024, 1536024, 5136024, 3516024, 5316024, 1365024, 3165024, 1635024, 6135024, 3615024, 6315024,
|
|
|
|
1563024, 5163024, 1653024, 6153024, 5613024, 6513024, 3561024, 5361024, 3651024, 6351024, 5631024, 6531024,
|
|
|
|
235614, 2035614, 325614, 3025614, 2305614, 3205614, 253614, 2053614, 523614, 5023614, 2503614, 5203614,
|
|
|
|
352614, 3052614, 532614, 5032614, 3502614, 5302614, 2350614, 3250614, 2530614, 5230614, 3520614, 5320614,
|
|
|
|
236514, 2036514, 326514, 3026514, 2306514, 3206514, 263514, 2063514, 623514, 6023514, 2603514, 6203514,
|
|
|
|
362514, 3062514, 632514, 6032514, 3602514, 6302514, 2360514, 3260514, 2630514, 6230514, 3620514, 6320514,
|
|
|
|
256314, 2056314, 526314, 5026314, 2506314, 5206314, 265314, 2065314, 625314, 6025314, 2605314, 6205314,
|
|
|
|
562314, 5062314, 652314, 6052314, 5602314, 6502314, 2560314, 5260314, 2650314, 6250314, 5620314, 6520314,
|
|
|
|
356214, 3056214, 536214, 5036214, 3506214, 5306214, 365214, 3065214, 635214, 6035214, 3605214, 6305214,
|
|
|
|
563214, 5063214, 653214, 6053214, 5603214, 6503214, 3560214, 5360214, 3650214, 6350214, 5630214, 6530214,
|
|
|
|
2356014, 3256014, 2536014, 5236014, 3526014, 5326014, 2365014, 3265014, 2635014, 6235014, 3625014, 6325014,
|
|
|
|
2563014, 5263014, 2653014, 6253014, 5623014, 6523014, 3562014, 5362014, 3652014, 6352014, 5632014, 6532014,
|
|
|
|
1235604, 2135604, 1325604, 3125604, 2315604, 3215604, 1253604, 2153604, 1523604, 5123604, 2513604, 5213604,
|
|
|
|
1352604, 3152604, 1532604, 5132604, 3512604, 5312604, 2351604, 3251604, 2531604, 5231604, 3521604, 5321604,
|
|
|
|
1236504, 2136504, 1326504, 3126504, 2316504, 3216504, 1263504, 2163504, 1623504, 6123504, 2613504, 6213504,
|
|
|
|
1362504, 3162504, 1632504, 6132504, 3612504, 6312504, 2361504, 3261504, 2631504, 6231504, 3621504, 6321504,
|
|
|
|
1256304, 2156304, 1526304, 5126304, 2516304, 5216304, 1265304, 2165304, 1625304, 6125304, 2615304, 6215304,
|
|
|
|
1562304, 5162304, 1652304, 6152304, 5612304, 6512304, 2561304, 5261304, 2651304, 6251304, 5621304, 6521304,
|
|
|
|
1356204, 3156204, 1536204, 5136204, 3516204, 5316204, 1365204, 3165204, 1635204, 6135204, 3615204, 6315204,
|
|
|
|
1563204, 5163204, 1653204, 6153204, 5613204, 6513204, 3561204, 5361204, 3651204, 6351204, 5631204, 6531204,
|
|
|
|
2356104, 3256104, 2536104, 5236104, 3526104, 5326104, 2365104, 3265104, 2635104, 6235104, 3625104, 6325104,
|
|
|
|
2563104, 5263104, 2653104, 6253104, 5623104, 6523104, 3562104, 5362104, 3652104, 6352104, 5632104, 6532104,
|
|
|
|
124563, 1024563, 214563, 2014563, 1204563, 2104563, 142563, 1042563, 412563, 4012563, 1402563, 4102563,
|
|
|
|
241563, 2041563, 421563, 4021563, 2401563, 4201563, 1240563, 2140563, 1420563, 4120563, 2410563, 4210563,
|
|
|
|
125463, 1025463, 215463, 2015463, 1205463, 2105463, 152463, 1052463, 512463, 5012463, 1502463, 5102463,
|
|
|
|
251463, 2051463, 521463, 5021463, 2501463, 5201463, 1250463, 2150463, 1520463, 5120463, 2510463, 5210463,
|
|
|
|
145263, 1045263, 415263, 4015263, 1405263, 4105263, 154263, 1054263, 514263, 5014263, 1504263, 5104263,
|
|
|
|
451263, 4051263, 541263, 5041263, 4501263, 5401263, 1450263, 4150263, 1540263, 5140263, 4510263, 5410263,
|
|
|
|
245163, 2045163, 425163, 4025163, 2405163, 4205163, 254163, 2054163, 524163, 5024163, 2504163, 5204163,
|
|
|
|
452163, 4052163, 542163, 5042163, 4502163, 5402163, 2450163, 4250163, 2540163, 5240163, 4520163, 5420163,
|
|
|
|
1245063, 2145063, 1425063, 4125063, 2415063, 4215063, 1254063, 2154063, 1524063, 5124063, 2514063, 5214063,
|
|
|
|
1452063, 4152063, 1542063, 5142063, 4512063, 5412063, 2451063, 4251063, 2541063, 5241063, 4521063, 5421063,
|
|
|
|
124653, 1024653, 214653, 2014653, 1204653, 2104653, 142653, 1042653, 412653, 4012653, 1402653, 4102653,
|
|
|
|
241653, 2041653, 421653, 4021653, 2401653, 4201653, 1240653, 2140653, 1420653, 4120653, 2410653, 4210653,
|
|
|
|
126453, 1026453, 216453, 2016453, 1206453, 2106453, 162453, 1062453, 612453, 6012453, 1602453, 6102453,
|
|
|
|
261453, 2061453, 621453, 6021453, 2601453, 6201453, 1260453, 2160453, 1620453, 6120453, 2610453, 6210453,
|
|
|
|
146253, 1046253, 416253, 4016253, 1406253, 4106253, 164253, 1064253, 614253, 6014253, 1604253, 6104253,
|
|
|
|
461253, 4061253, 641253, 6041253, 4601253, 6401253, 1460253, 4160253, 1640253, 6140253, 4610253, 6410253,
|
|
|
|
246153, 2046153, 426153, 4026153, 2406153, 4206153, 264153, 2064153, 624153, 6024153, 2604153, 6204153,
|
|
|
|
462153, 4062153, 642153, 6042153, 4602153, 6402153, 2460153, 4260153, 2640153, 6240153, 4620153, 6420153,
|
|
|
|
1246053, 2146053, 1426053, 4126053, 2416053, 4216053, 1264053, 2164053, 1624053, 6124053, 2614053, 6214053,
|
|
|
|
1462053, 4162053, 1642053, 6142053, 4612053, 6412053, 2461053, 4261053, 2641053, 6241053, 4621053, 6421053,
|
|
|
|
125643, 1025643, 215643, 2015643, 1205643, 2105643, 152643, 1052643, 512643, 5012643, 1502643, 5102643,
|
|
|
|
251643, 2051643, 521643, 5021643, 2501643, 5201643, 1250643, 2150643, 1520643, 5120643, 2510643, 5210643,
|
|
|
|
126543, 1026543, 216543, 2016543, 1206543, 2106543, 162543, 1062543, 612543, 6012543, 1602543, 6102543,
|
|
|
|
261543, 2061543, 621543, 6021543, 2601543, 6201543, 1260543, 2160543, 1620543, 6120543, 2610543, 6210543,
|
|
|
|
156243, 1056243, 516243, 5016243, 1506243, 5106243, 165243, 1065243, 615243, 6015243, 1605243, 6105243,
|
|
|
|
561243, 5061243, 651243, 6051243, 5601243, 6501243, 1560243, 5160243, 1650243, 6150243, 5610243, 6510243,
|
|
|
|
256143, 2056143, 526143, 5026143, 2506143, 5206143, 265143, 2065143, 625143, 6025143, 2605143, 6205143,
|
|
|
|
562143, 5062143, 652143, 6052143, 5602143, 6502143, 2560143, 5260143, 2650143, 6250143, 5620143, 6520143,
|
|
|
|
1256043, 2156043, 1526043, 5126043, 2516043, 5216043, 1265043, 2165043, 1625043, 6125043, 2615043, 6215043,
|
|
|
|
1562043, 5162043, 1652043, 6152043, 5612043, 6512043, 2561043, 5261043, 2651043, 6251043, 5621043, 6521043,
|
|
|
|
145623, 1045623, 415623, 4015623, 1405623, 4105623, 154623, 1054623, 514623, 5014623, 1504623, 5104623,
|
|
|
|
451623, 4051623, 541623, 5041623, 4501623, 5401623, 1450623, 4150623, 1540623, 5140623, 4510623, 5410623,
|
|
|
|
146523, 1046523, 416523, 4016523, 1406523, 4106523, 164523, 1064523, 614523, 6014523, 1604523, 6104523,
|
|
|
|
461523, 4061523, 641523, 6041523, 4601523, 6401523, 1460523, 4160523, 1640523, 6140523, 4610523, 6410523,
|
|
|
|
156423, 1056423, 516423, 5016423, 1506423, 5106423, 165423, 1065423, 615423, 6015423, 1605423, 6105423,
|
|
|
|
561423, 5061423, 651423, 6051423, 5601423, 6501423, 1560423, 5160423, 1650423, 6150423, 5610423, 6510423,
|
|
|
|
456123, 4056123, 546123, 5046123, 4506123, 5406123, 465123, 4065123, 645123, 6045123, 4605123, 6405123,
|
|
|
|
564123, 5064123, 654123, 6054123, 5604123, 6504123, 4560123, 5460123, 4650123, 6450123, 5640123, 6540123,
|
|
|
|
1456023, 4156023, 1546023, 5146023, 4516023, 5416023, 1465023, 4165023, 1645023, 6145023, 4615023, 6415023,
|
|
|
|
1564023, 5164023, 1654023, 6154023, 5614023, 6514023, 4561023, 5461023, 4651023, 6451023, 5641023, 6541023,
|
|
|
|
245613, 2045613, 425613, 4025613, 2405613, 4205613, 254613, 2054613, 524613, 5024613, 2504613, 5204613,
|
|
|
|
452613, 4052613, 542613, 5042613, 4502613, 5402613, 2450613, 4250613, 2540613, 5240613, 4520613, 5420613,
|
|
|
|
246513, 2046513, 426513, 4026513, 2406513, 4206513, 264513, 2064513, 624513, 6024513, 2604513, 6204513,
|
|
|
|
462513, 4062513, 642513, 6042513, 4602513, 6402513, 2460513, 4260513, 2640513, 6240513, 4620513, 6420513,
|
|
|
|
256413, 2056413, 526413, 5026413, 2506413, 5206413, 265413, 2065413, 625413, 6025413, 2605413, 6205413,
|
|
|
|
562413, 5062413, 652413, 6052413, 5602413, 6502413, 2560413, 5260413, 2650413, 6250413, 5620413, 6520413,
|
|
|
|
456213, 4056213, 546213, 5046213, 4506213, 5406213, 465213, 4065213, 645213, 6045213, 4605213, 6405213,
|
|
|
|
564213, 5064213, 654213, 6054213, 5604213, 6504213, 4560213, 5460213, 4650213, 6450213, 5640213, 6540213,
|
|
|
|
2456013, 4256013, 2546013, 5246013, 4526013, 5426013, 2465013, 4265013, 2645013, 6245013, 4625013, 6425013,
|
|
|
|
2564013, 5264013, 2654013, 6254013, 5624013, 6524013, 4562013, 5462013, 4652013, 6452013, 5642013, 6542013,
|
|
|
|
1245603, 2145603, 1425603, 4125603, 2415603, 4215603, 1254603, 2154603, 1524603, 5124603, 2514603, 5214603,
|
|
|
|
1452603, 4152603, 1542603, 5142603, 4512603, 5412603, 2451603, 4251603, 2541603, 5241603, 4521603, 5421603,
|
|
|
|
1246503, 2146503, 1426503, 4126503, 2416503, 4216503, 1264503, 2164503, 1624503, 6124503, 2614503, 6214503,
|
|
|
|
1462503, 4162503, 1642503, 6142503, 4612503, 6412503, 2461503, 4261503, 2641503, 6241503, 4621503, 6421503,
|
|
|
|
1256403, 2156403, 1526403, 5126403, 2516403, 5216403, 1265403, 2165403, 1625403, 6125403, 2615403, 6215403,
|
|
|
|
1562403, 5162403, 1652403, 6152403, 5612403, 6512403, 2561403, 5261403, 2651403, 6251403, 5621403, 6521403,
|
|
|
|
1456203, 4156203, 1546203, 5146203, 4516203, 5416203, 1465203, 4165203, 1645203, 6145203, 4615203, 6415203,
|
|
|
|
1564203, 5164203, 1654203, 6154203, 5614203, 6514203, 4561203, 5461203, 4651203, 6451203, 5641203, 6541203,
|
|
|
|
2456103, 4256103, 2546103, 5246103, 4526103, 5426103, 2465103, 4265103, 2645103, 6245103, 4625103, 6425103,
|
|
|
|
2564103, 5264103, 2654103, 6254103, 5624103, 6524103, 4562103, 5462103, 4652103, 6452103, 5642103, 6542103,
|
|
|
|
134562, 1034562, 314562, 3014562, 1304562, 3104562, 143562, 1043562, 413562, 4013562, 1403562, 4103562,
|
|
|
|
341562, 3041562, 431562, 4031562, 3401562, 4301562, 1340562, 3140562, 1430562, 4130562, 3410562, 4310562,
|
|
|
|
135462, 1035462, 315462, 3015462, 1305462, 3105462, 153462, 1053462, 513462, 5013462, 1503462, 5103462,
|
|
|
|
351462, 3051462, 531462, 5031462, 3501462, 5301462, 1350462, 3150462, 1530462, 5130462, 3510462, 5310462,
|
|
|
|
145362, 1045362, 415362, 4015362, 1405362, 4105362, 154362, 1054362, 514362, 5014362, 1504362, 5104362,
|
|
|
|
451362, 4051362, 541362, 5041362, 4501362, 5401362, 1450362, 4150362, 1540362, 5140362, 4510362, 5410362,
|
|
|
|
345162, 3045162, 435162, 4035162, 3405162, 4305162, 354162, 3054162, 534162, 5034162, 3504162, 5304162,
|
|
|
|
453162, 4053162, 543162, 5043162, 4503162, 5403162, 3450162, 4350162, 3540162, 5340162, 4530162, 5430162,
|
|
|
|
1345062, 3145062, 1435062, 4135062, 3415062, 4315062, 1354062, 3154062, 1534062, 5134062, 3514062, 5314062,
|
|
|
|
1453062, 4153062, 1543062, 5143062, 4513062, 5413062, 3451062, 4351062, 3541062, 5341062, 4531062, 5431062,
|
|
|
|
134652, 1034652, 314652, 3014652, 1304652, 3104652, 143652, 1043652, 413652, 4013652, 1403652, 4103652,
|
|
|
|
341652, 3041652, 431652, 4031652, 3401652, 4301652, 1340652, 3140652, 1430652, 4130652, 3410652, 4310652,
|
|
|
|
136452, 1036452, 316452, 3016452, 1306452, 3106452, 163452, 1063452, 613452, 6013452, 1603452, 6103452,
|
|
|
|
361452, 3061452, 631452, 6031452, 3601452, 6301452, 1360452, 3160452, 1630452, 6130452, 3610452, 6310452,
|
|
|
|
146352, 1046352, 416352, 4016352, 1406352, 4106352, 164352, 1064352, 614352, 6014352, 1604352, 6104352,
|
|
|
|
461352, 4061352, 641352, 6041352, 4601352, 6401352, 1460352, 4160352, 1640352, 6140352, 4610352, 6410352,
|
|
|
|
346152, 3046152, 436152, 4036152, 3406152, 4306152, 364152, 3064152, 634152, 6034152, 3604152, 6304152,
|
|
|
|
463152, 4063152, 643152, 6043152, 4603152, 6403152, 3460152, 4360152, 3640152, 6340152, 4630152, 6430152,
|
|
|
|
1346052, 3146052, 1436052, 4136052, 3416052, 4316052, 1364052, 3164052, 1634052, 6134052, 3614052, 6314052,
|
|
|
|
1463052, 4163052, 1643052, 6143052, 4613052, 6413052, 3461052, 4361052, 3641052, 6341052, 4631052, 6431052,
|
|
|
|
135642, 1035642, 315642, 3015642, 1305642, 3105642, 153642, 1053642, 513642, 5013642, 1503642, 5103642,
|
|
|
|
351642, 3051642, 531642, 5031642, 3501642, 5301642, 1350642, 3150642, 1530642, 5130642, 3510642, 5310642,
|
|
|
|
136542, 1036542, 316542, 3016542, 1306542, 3106542, 163542, 1063542, 613542, 6013542, 1603542, 6103542,
|
|
|
|
361542, 3061542, 631542, 6031542, 3601542, 6301542, 1360542, 3160542, 1630542, 6130542, 3610542, 6310542,
|
|
|
|
156342, 1056342, 516342, 5016342, 1506342, 5106342, 165342, 1065342, 615342, 6015342, 1605342, 6105342,
|
|
|
|
561342, 5061342, 651342, 6051342, 5601342, 6501342, 1560342, 5160342, 1650342, 6150342, 5610342, 6510342,
|
|
|
|
356142, 3056142, 536142, 5036142, 3506142, 5306142, 365142, 3065142, 635142, 6035142, 3605142, 6305142,
|
|
|
|
563142, 5063142, 653142, 6053142, 5603142, 6503142, 3560142, 5360142, 3650142, 6350142, 5630142, 6530142,
|
|
|
|
1356042, 3156042, 1536042, 5136042, 3516042, 5316042, 1365042, 3165042, 1635042, 6135042, 3615042, 6315042,
|
|
|
|
1563042, 5163042, 1653042, 6153042, 5613042, 6513042, 3561042, 5361042, 3651042, 6351042, 5631042, 6531042,
|
|
|
|
145632, 1045632, 415632, 4015632, 1405632, 4105632, 154632, 1054632, 514632, 5014632, 1504632, 5104632,
|
|
|
|
451632, 4051632, 541632, 5041632, 4501632, 5401632, 1450632, 4150632, 1540632, 5140632, 4510632, 5410632,
|
|
|
|
146532, 1046532, 416532, 4016532, 1406532, 4106532, 164532, 1064532, 614532, 6014532, 1604532, 6104532,
|
|
|
|
461532, 4061532, 641532, 6041532, 4601532, 6401532, 1460532, 4160532, 1640532, 6140532, 4610532, 6410532,
|
|
|
|
156432, 1056432, 516432, 5016432, 1506432, 5106432, 165432, 1065432, 615432, 6015432, 1605432, 6105432,
|
|
|
|
561432, 5061432, 651432, 6051432, 5601432, 6501432, 1560432, 5160432, 1650432, 6150432, 5610432, 6510432,
|
|
|
|
456132, 4056132, 546132, 5046132, 4506132, 5406132, 465132, 4065132, 645132, 6045132, 4605132, 6405132,
|
|
|
|
564132, 5064132, 654132, 6054132, 5604132, 6504132, 4560132, 5460132, 4650132, 6450132, 5640132, 6540132,
|
|
|
|
1456032, 4156032, 1546032, 5146032, 4516032, 5416032, 1465032, 4165032, 1645032, 6145032, 4615032, 6415032,
|
|
|
|
1564032, 5164032, 1654032, 6154032, 5614032, 6514032, 4561032, 5461032, 4651032, 6451032, 5641032, 6541032,
|
|
|
|
345612, 3045612, 435612, 4035612, 3405612, 4305612, 354612, 3054612, 534612, 5034612, 3504612, 5304612,
|
|
|
|
453612, 4053612, 543612, 5043612, 4503612, 5403612, 3450612, 4350612, 3540612, 5340612, 4530612, 5430612,
|
|
|
|
346512, 3046512, 436512, 4036512, 3406512, 4306512, 364512, 3064512, 634512, 6034512, 3604512, 6304512,
|
|
|
|
463512, 4063512, 643512, 6043512, 4603512, 6403512, 3460512, 4360512, 3640512, 6340512, 4630512, 6430512,
|
|
|
|
356412, 3056412, 536412, 5036412, 3506412, 5306412, 365412, 3065412, 635412, 6035412, 3605412, 6305412,
|
|
|
|
563412, 5063412, 653412, 6053412, 5603412, 6503412, 3560412, 5360412, 3650412, 6350412, 5630412, 6530412,
|
|
|
|
456312, 4056312, 546312, 5046312, 4506312, 5406312, 465312, 4065312, 645312, 6045312, 4605312, 6405312,
|
|
|
|
564312, 5064312, 654312, 6054312, 5604312, 6504312, 4560312, 5460312, 4650312, 6450312, 5640312, 6540312,
|
|
|
|
3456012, 4356012, 3546012, 5346012, 4536012, 5436012, 3465012, 4365012, 3645012, 6345012, 4635012, 6435012,
|
|
|
|
3564012, 5364012, 3654012, 6354012, 5634012, 6534012, 4563012, 5463012, 4653012, 6453012, 5643012, 6543012,
|
|
|
|
1345602, 3145602, 1435602, 4135602, 3415602, 4315602, 1354602, 3154602, 1534602, 5134602, 3514602, 5314602,
|
|
|
|
1453602, 4153602, 1543602, 5143602, 4513602, 5413602, 3451602, 4351602, 3541602, 5341602, 4531602, 5431602,
|
|
|
|
1346502, 3146502, 1436502, 4136502, 3416502, 4316502, 1364502, 3164502, 1634502, 6134502, 3614502, 6314502,
|
|
|
|
1463502, 4163502, 1643502, 6143502, 4613502, 6413502, 3461502, 4361502, 3641502, 6341502, 4631502, 6431502,
|
|
|
|
1356402, 3156402, 1536402, 5136402, 3516402, 5316402, 1365402, 3165402, 1635402, 6135402, 3615402, 6315402,
|
|
|
|
1563402, 5163402, 1653402, 6153402, 5613402, 6513402, 3561402, 5361402, 3651402, 6351402, 5631402, 6531402,
|
|
|
|
1456302, 4156302, 1546302, 5146302, 4516302, 5416302, 1465302, 4165302, 1645302, 6145302, 4615302, 6415302,
|
|
|
|
1564302, 5164302, 1654302, 6154302, 5614302, 6514302, 4561302, 5461302, 4651302, 6451302, 5641302, 6541302,
|
|
|
|
3456102, 4356102, 3546102, 5346102, 4536102, 5436102, 3465102, 4365102, 3645102, 6345102, 4635102, 6435102,
|
|
|
|
3564102, 5364102, 3654102, 6354102, 5634102, 6534102, 4563102, 5463102, 4653102, 6453102, 5643102, 6543102,
|
|
|
|
234561, 2034561, 324561, 3024561, 2304561, 3204561, 243561, 2043561, 423561, 4023561, 2403561, 4203561,
|
|
|
|
342561, 3042561, 432561, 4032561, 3402561, 4302561, 2340561, 3240561, 2430561, 4230561, 3420561, 4320561,
|
|
|
|
235461, 2035461, 325461, 3025461, 2305461, 3205461, 253461, 2053461, 523461, 5023461, 2503461, 5203461,
|
|
|
|
352461, 3052461, 532461, 5032461, 3502461, 5302461, 2350461, 3250461, 2530461, 5230461, 3520461, 5320461,
|
|
|
|
245361, 2045361, 425361, 4025361, 2405361, 4205361, 254361, 2054361, 524361, 5024361, 2504361, 5204361,
|
|
|
|
452361, 4052361, 542361, 5042361, 4502361, 5402361, 2450361, 4250361, 2540361, 5240361, 4520361, 5420361,
|
|
|
|
345261, 3045261, 435261, 4035261, 3405261, 4305261, 354261, 3054261, 534261, 5034261, 3504261, 5304261,
|
|
|
|
453261, 4053261, 543261, 5043261, 4503261, 5403261, 3450261, 4350261, 3540261, 5340261, 4530261, 5430261,
|
|
|
|
2345061, 3245061, 2435061, 4235061, 3425061, 4325061, 2354061, 3254061, 2534061, 5234061, 3524061, 5324061,
|
|
|
|
2453061, 4253061, 2543061, 5243061, 4523061, 5423061, 3452061, 4352061, 3542061, 5342061, 4532061, 5432061,
|
|
|
|
234651, 2034651, 324651, 3024651, 2304651, 3204651, 243651, 2043651, 423651, 4023651, 2403651, 4203651,
|
|
|
|
342651, 3042651, 432651, 4032651, 3402651, 4302651, 2340651, 3240651, 2430651, 4230651, 3420651, 4320651,
|
|
|
|
236451, 2036451, 326451, 3026451, 2306451, 3206451, 263451, 2063451, 623451, 6023451, 2603451, 6203451,
|
|
|
|
362451, 3062451, 632451, 6032451, 3602451, 6302451, 2360451, 3260451, 2630451, 6230451, 3620451, 6320451,
|
|
|
|
246351, 2046351, 426351, 4026351, 2406351, 4206351, 264351, 2064351, 624351, 6024351, 2604351, 6204351,
|
|
|
|
462351, 4062351, 642351, 6042351, 4602351, 6402351, 2460351, 4260351, 2640351, 6240351, 4620351, 6420351,
|
|
|
|
346251, 3046251, 436251, 4036251, 3406251, 4306251, 364251, 3064251, 634251, 6034251, 3604251, 6304251,
|
|
|
|
463251, 4063251, 643251, 6043251, 4603251, 6403251, 3460251, 4360251, 3640251, 6340251, 4630251, 6430251,
|
|
|
|
2346051, 3246051, 2436051, 4236051, 3426051, 4326051, 2364051, 3264051, 2634051, 6234051, 3624051, 6324051,
|
|
|
|
2463051, 4263051, 2643051, 6243051, 4623051, 6423051, 3462051, 4362051, 3642051, 6342051, 4632051, 6432051,
|
|
|
|
235641, 2035641, 325641, 3025641, 2305641, 3205641, 253641, 2053641, 523641, 5023641, 2503641, 5203641,
|
|
|
|
352641, 3052641, 532641, 5032641, 3502641, 5302641, 2350641, 3250641, 2530641, 5230641, 3520641, 5320641,
|
|
|
|
236541, 2036541, 326541, 3026541, 2306541, 3206541, 263541, 2063541, 623541, 6023541, 2603541, 6203541,
|
|
|
|
362541, 3062541, 632541, 6032541, 3602541, 6302541, 2360541, 3260541, 2630541, 6230541, 3620541, 6320541,
|
|
|
|
256341, 2056341, 526341, 5026341, 2506341, 5206341, 265341, 2065341, 625341, 6025341, 2605341, 6205341,
|
|
|
|
562341, 5062341, 652341, 6052341, 5602341, 6502341, 2560341, 5260341, 2650341, 6250341, 5620341, 6520341,
|
|
|
|
356241, 3056241, 536241, 5036241, 3506241, 5306241, 365241, 3065241, 635241, 6035241, 3605241, 6305241,
|
|
|
|
563241, 5063241, 653241, 6053241, 5603241, 6503241, 3560241, 5360241, 3650241, 6350241, 5630241, 6530241,
|
|
|
|
2356041, 3256041, 2536041, 5236041, 3526041, 5326041, 2365041, 3265041, 2635041, 6235041, 3625041, 6325041,
|
|
|
|
2563041, 5263041, 2653041, 6253041, 5623041, 6523041, 3562041, 5362041, 3652041, 6352041, 5632041, 6532041,
|
|
|
|
245631, 2045631, 425631, 4025631, 2405631, 4205631, 254631, 2054631, 524631, 5024631, 2504631, 5204631,
|
|
|
|
452631, 4052631, 542631, 5042631, 4502631, 5402631, 2450631, 4250631, 2540631, 5240631, 4520631, 5420631,
|
|
|
|
246531, 2046531, 426531, 4026531, 2406531, 4206531, 264531, 2064531, 624531, 6024531, 2604531, 6204531,
|
|
|
|
462531, 4062531, 642531, 6042531, 4602531, 6402531, 2460531, 4260531, 2640531, 6240531, 4620531, 6420531,
|
|
|
|
256431, 2056431, 526431, 5026431, 2506431, 5206431, 265431, 2065431, 625431, 6025431, 2605431, 6205431,
|
|
|
|
562431, 5062431, 652431, 6052431, 5602431, 6502431, 2560431, 5260431, 2650431, 6250431, 5620431, 6520431,
|
|
|
|
456231, 4056231, 546231, 5046231, 4506231, 5406231, 465231, 4065231, 645231, 6045231, 4605231, 6405231,
|
|
|
|
564231, 5064231, 654231, 6054231, 5604231, 6504231, 4560231, 5460231, 4650231, 6450231, 5640231, 6540231,
|
|
|
|
2456031, 4256031, 2546031, 5246031, 4526031, 5426031, 2465031, 4265031, 2645031, 6245031, 4625031, 6425031,
|
|
|
|
2564031, 5264031, 2654031, 6254031, 5624031, 6524031, 4562031, 5462031, 4652031, 6452031, 5642031, 6542031,
|
|
|
|
345621, 3045621, 435621, 4035621, 3405621, 4305621, 354621, 3054621, 534621, 5034621, 3504621, 5304621,
|
|
|
|
453621, 4053621, 543621, 5043621, 4503621, 5403621, 3450621, 4350621, 3540621, 5340621, 4530621, 5430621,
|
|
|
|
346521, 3046521, 436521, 4036521, 3406521, 4306521, 364521, 3064521, 634521, 6034521, 3604521, 6304521,
|
|
|
|
463521, 4063521, 643521, 6043521, 4603521, 6403521, 3460521, 4360521, 3640521, 6340521, 4630521, 6430521,
|
|
|
|
356421, 3056421, 536421, 5036421, 3506421, 5306421, 365421, 3065421, 635421, 6035421, 3605421, 6305421,
|
|
|
|
563421, 5063421, 653421, 6053421, 5603421, 6503421, 3560421, 5360421, 3650421, 6350421, 5630421, 6530421,
|
|
|
|
456321, 4056321, 546321, 5046321, 4506321, 5406321, 465321, 4065321, 645321, 6045321, 4605321, 6405321,
|
|
|
|
564321, 5064321, 654321, 6054321, 5604321, 6504321, 4560321, 5460321, 4650321, 6450321, 5640321, 6540321,
|
|
|
|
3456021, 4356021, 3546021, 5346021, 4536021, 5436021, 3465021, 4365021, 3645021, 6345021, 4635021, 6435021,
|
|
|
|
3564021, 5364021, 3654021, 6354021, 5634021, 6534021, 4563021, 5463021, 4653021, 6453021, 5643021, 6543021,
|
|
|
|
2345601, 3245601, 2435601, 4235601, 3425601, 4325601, 2354601, 3254601, 2534601, 5234601, 3524601, 5324601,
|
|
|
|
2453601, 4253601, 2543601, 5243601, 4523601, 5423601, 3452601, 4352601, 3542601, 5342601, 4532601, 5432601,
|
|
|
|
2346501, 3246501, 2436501, 4236501, 3426501, 4326501, 2364501, 3264501, 2634501, 6234501, 3624501, 6324501,
|
|
|
|
2463501, 4263501, 2643501, 6243501, 4623501, 6423501, 3462501, 4362501, 3642501, 6342501, 4632501, 6432501,
|
|
|
|
2356401, 3256401, 2536401, 5236401, 3526401, 5326401, 2365401, 3265401, 2635401, 6235401, 3625401, 6325401,
|
|
|
|
2563401, 5263401, 2653401, 6253401, 5623401, 6523401, 3562401, 5362401, 3652401, 6352401, 5632401, 6532401,
|
|
|
|
2456301, 4256301, 2546301, 5246301, 4526301, 5426301, 2465301, 4265301, 2645301, 6245301, 4625301, 6425301,
|
|
|
|
2564301, 5264301, 2654301, 6254301, 5624301, 6524301, 4562301, 5462301, 4652301, 6452301, 5642301, 6542301,
|
|
|
|
3456201, 4356201, 3546201, 5346201, 4536201, 5436201, 3465201, 4365201, 3645201, 6345201, 4635201, 6435201,
|
|
|
|
3564201, 5364201, 3654201, 6354201, 5634201, 6534201, 4563201, 5463201, 4653201, 6453201, 5643201, 6543201,
|
|
|
|
1234560, 2134560, 1324560, 3124560, 2314560, 3214560, 1243560, 2143560, 1423560, 4123560, 2413560, 4213560,
|
|
|
|
1342560, 3142560, 1432560, 4132560, 3412560, 4312560, 2341560, 3241560, 2431560, 4231560, 3421560, 4321560,
|
|
|
|
1235460, 2135460, 1325460, 3125460, 2315460, 3215460, 1253460, 2153460, 1523460, 5123460, 2513460, 5213460,
|
|
|
|
1352460, 3152460, 1532460, 5132460, 3512460, 5312460, 2351460, 3251460, 2531460, 5231460, 3521460, 5321460,
|
|
|
|
1245360, 2145360, 1425360, 4125360, 2415360, 4215360, 1254360, 2154360, 1524360, 5124360, 2514360, 5214360,
|
|
|
|
1452360, 4152360, 1542360, 5142360, 4512360, 5412360, 2451360, 4251360, 2541360, 5241360, 4521360, 5421360,
|
|
|
|
1345260, 3145260, 1435260, 4135260, 3415260, 4315260, 1354260, 3154260, 1534260, 5134260, 3514260, 5314260,
|
|
|
|
1453260, 4153260, 1543260, 5143260, 4513260, 5413260, 3451260, 4351260, 3541260, 5341260, 4531260, 5431260,
|
|
|
|
2345160, 3245160, 2435160, 4235160, 3425160, 4325160, 2354160, 3254160, 2534160, 5234160, 3524160, 5324160,
|
|
|
|
2453160, 4253160, 2543160, 5243160, 4523160, 5423160, 3452160, 4352160, 3542160, 5342160, 4532160, 5432160,
|
|
|
|
1234650, 2134650, 1324650, 3124650, 2314650, 3214650, 1243650, 2143650, 1423650, 4123650, 2413650, 4213650,
|
|
|
|
1342650, 3142650, 1432650, 4132650, 3412650, 4312650, 2341650, 3241650, 2431650, 4231650, 3421650, 4321650,
|
|
|
|
1236450, 2136450, 1326450, 3126450, 2316450, 3216450, 1263450, 2163450, 1623450, 6123450, 2613450, 6213450,
|
|
|
|
1362450, 3162450, 1632450, 6132450, 3612450, 6312450, 2361450, 3261450, 2631450, 6231450, 3621450, 6321450,
|
|
|
|
1246350, 2146350, 1426350, 4126350, 2416350, 4216350, 1264350, 2164350, 1624350, 6124350, 2614350, 6214350,
|
|
|
|
1462350, 4162350, 1642350, 6142350, 4612350, 6412350, 2461350, 4261350, 2641350, 6241350, 4621350, 6421350,
|
|
|
|
1346250, 3146250, 1436250, 4136250, 3416250, 4316250, 1364250, 3164250, 1634250, 6134250, 3614250, 6314250,
|
|
|
|
1463250, 4163250, 1643250, 6143250, 4613250, 6413250, 3461250, 4361250, 3641250, 6341250, 4631250, 6431250,
|
|
|
|
2346150, 3246150, 2436150, 4236150, 3426150, 4326150, 2364150, 3264150, 2634150, 6234150, 3624150, 6324150,
|
|
|
|
2463150, 4263150, 2643150, 6243150, 4623150, 6423150, 3462150, 4362150, 3642150, 6342150, 4632150, 6432150,
|
|
|
|
1235640, 2135640, 1325640, 3125640, 2315640, 3215640, 1253640, 2153640, 1523640, 5123640, 2513640, 5213640,
|
|
|
|
1352640, 3152640, 1532640, 5132640, 3512640, 5312640, 2351640, 3251640, 2531640, 5231640, 3521640, 5321640,
|
|
|
|
1236540, 2136540, 1326540, 3126540, 2316540, 3216540, 1263540, 2163540, 1623540, 6123540, 2613540, 6213540,
|
|
|
|
1362540, 3162540, 1632540, 6132540, 3612540, 6312540, 2361540, 3261540, 2631540, 6231540, 3621540, 6321540,
|
|
|
|
1256340, 2156340, 1526340, 5126340, 2516340, 5216340, 1265340, 2165340, 1625340, 6125340, 2615340, 6215340,
|
|
|
|
1562340, 5162340, 1652340, 6152340, 5612340, 6512340, 2561340, 5261340, 2651340, 6251340, 5621340, 6521340,
|
|
|
|
1356240, 3156240, 1536240, 5136240, 3516240, 5316240, 1365240, 3165240, 1635240, 6135240, 3615240, 6315240,
|
|
|
|
1563240, 5163240, 1653240, 6153240, 5613240, 6513240, 3561240, 5361240, 3651240, 6351240, 5631240, 6531240,
|
|
|
|
2356140, 3256140, 2536140, 5236140, 3526140, 5326140, 2365140, 3265140, 2635140, 6235140, 3625140, 6325140,
|
|
|
|
2563140, 5263140, 2653140, 6253140, 5623140, 6523140, 3562140, 5362140, 3652140, 6352140, 5632140, 6532140,
|
|
|
|
1245630, 2145630, 1425630, 4125630, 2415630, 4215630, 1254630, 2154630, 1524630, 5124630, 2514630, 5214630,
|
|
|
|
1452630, 4152630, 1542630, 5142630, 4512630, 5412630, 2451630, 4251630, 2541630, 5241630, 4521630, 5421630,
|
|
|
|
1246530, 2146530, 1426530, 4126530, 2416530, 4216530, 1264530, 2164530, 1624530, 6124530, 2614530, 6214530,
|
|
|
|
1462530, 4162530, 1642530, 6142530, 4612530, 6412530, 2461530, 4261530, 2641530, 6241530, 4621530, 6421530,
|
|
|
|
1256430, 2156430, 1526430, 5126430, 2516430, 5216430, 1265430, 2165430, 1625430, 6125430, 2615430, 6215430,
|
|
|
|
1562430, 5162430, 1652430, 6152430, 5612430, 6512430, 2561430, 5261430, 2651430, 6251430, 5621430, 6521430,
|
|
|
|
1456230, 4156230, 1546230, 5146230, 4516230, 5416230, 1465230, 4165230, 1645230, 6145230, 4615230, 6415230,
|
|
|
|
1564230, 5164230, 1654230, 6154230, 5614230, 6514230, 4561230, 5461230, 4651230, 6451230, 5641230, 6541230,
|
|
|
|
2456130, 4256130, 2546130, 5246130, 4526130, 5426130, 2465130, 4265130, 2645130, 6245130, 4625130, 6425130,
|
|
|
|
2564130, 5264130, 2654130, 6254130, 5624130, 6524130, 4562130, 5462130, 4652130, 6452130, 5642130, 6542130,
|
|
|
|
1345620, 3145620, 1435620, 4135620, 3415620, 4315620, 1354620, 3154620, 1534620, 5134620, 3514620, 5314620,
|
|
|
|
1453620, 4153620, 1543620, 5143620, 4513620, 5413620, 3451620, 4351620, 3541620, 5341620, 4531620, 5431620,
|
|
|
|
1346520, 3146520, 1436520, 4136520, 3416520, 4316520, 1364520, 3164520, 1634520, 6134520, 3614520, 6314520,
|
|
|
|
1463520, 4163520, 1643520, 6143520, 4613520, 6413520, 3461520, 4361520, 3641520, 6341520, 4631520, 6431520,
|
|
|
|
1356420, 3156420, 1536420, 5136420, 3516420, 5316420, 1365420, 3165420, 1635420, 6135420, 3615420, 6315420,
|
|
|
|
1563420, 5163420, 1653420, 6153420, 5613420, 6513420, 3561420, 5361420, 3651420, 6351420, 5631420, 6531420,
|
|
|
|
1456320, 4156320, 1546320, 5146320, 4516320, 5416320, 1465320, 4165320, 1645320, 6145320, 4615320, 6415320,
|
|
|
|
1564320, 5164320, 1654320, 6154320, 5614320, 6514320, 4561320, 5461320, 4651320, 6451320, 5641320, 6541320,
|
|
|
|
3456120, 4356120, 3546120, 5346120, 4536120, 5436120, 3465120, 4365120, 3645120, 6345120, 4635120, 6435120,
|
|
|
|
3564120, 5364120, 3654120, 6354120, 5634120, 6534120, 4563120, 5463120, 4653120, 6453120, 5643120, 6543120,
|
|
|
|
2345610, 3245610, 2435610, 4235610, 3425610, 4325610, 2354610, 3254610, 2534610, 5234610, 3524610, 5324610,
|
|
|
|
2453610, 4253610, 2543610, 5243610, 4523610, 5423610, 3452610, 4352610, 3542610, 5342610, 4532610, 5432610,
|
|
|
|
2346510, 3246510, 2436510, 4236510, 3426510, 4326510, 2364510, 3264510, 2634510, 6234510, 3624510, 6324510,
|
|
|
|
2463510, 4263510, 2643510, 6243510, 4623510, 6423510, 3462510, 4362510, 3642510, 6342510, 4632510, 6432510,
|
|
|
|
2356410, 3256410, 2536410, 5236410, 3526410, 5326410, 2365410, 3265410, 2635410, 6235410, 3625410, 6325410,
|
|
|
|
2563410, 5263410, 2653410, 6253410, 5623410, 6523410, 3562410, 5362410, 3652410, 6352410, 5632410, 6532410,
|
|
|
|
2456310, 4256310, 2546310, 5246310, 4526310, 5426310, 2465310, 4265310, 2645310, 6245310, 4625310, 6425310,
|
|
|
|
2564310, 5264310, 2654310, 6254310, 5624310, 6524310, 4562310, 5462310, 4652310, 6452310, 5642310, 6542310,
|
|
|
|
3456210, 4356210, 3546210, 5346210, 4536210, 5436210, 3465210, 4365210, 3645210, 6345210, 4635210, 6435210,
|
|
|
|
3564210, 5364210, 3654210, 6354210, 5634210, 6534210, 4563210, 5463210, 4653210, 6453210, 5643210, 6543210
|
|
|
|
};
|
|
|
|
std::map<uint64_t, int> expected;
|
|
|
|
for (std::size_t i = 0; i < 5040; i++)
|
|
|
|
expected[pre_expected[i]] = 0; // flags are 0, everything is symmetric here
|
|
|
|
|
|
|
|
VERIFY(isDynGroup(group));
|
|
|
|
VERIFY_IS_EQUAL(group.size(), 5040u);
|
|
|
|
VERIFY_IS_EQUAL(group.globalFlags(), 0);
|
|
|
|
group.apply<checkIdx, int>(identity7, 0, found, expected);
|
|
|
|
VERIFY_IS_EQUAL(found.size(), 5040u);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_tensor_epsilon()
|
|
|
|
{
|
unsupported/TensorSymmetry: make symgroup construction autodetect number of indices
When constructing a symmetry group, make the code automatically detect
the number of indices required from the indices of the group's
generators. Also, allow the symmetry group to be applied to lists of
indices that are larger than the number of indices of the symmetry
group.
Before:
SGroup<4, Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
After:
SGroup<Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
group.apply<SomeOp, int>(std::array<int,5>{{0, 1, 2, 3, 4}}, 0);
This should make the symmetry group easier to use - especially if one
wants to reuse the same symmetry group for different tensors of maybe
different rank.
static/runtime asserts remain for the case where the length of the
index list to which a symmetry group is to be applied is too small.
2014-06-05 02:27:42 +08:00
|
|
|
SGroup<AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
Tensor<int, 3> epsilon(3,3,3);
|
|
|
|
|
|
|
|
epsilon.setZero();
|
2014-06-05 02:44:22 +08:00
|
|
|
sym(epsilon, 0, 1, 2) = 1;
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
|
for (int j = 0; j < 3; j++) {
|
|
|
|
for (int k = 0; k < 3; k++) {
|
|
|
|
VERIFY_IS_EQUAL((epsilon(i,j,k)), (- (j - i) * (k - j) * (i - k) / 2) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_tensor_sym()
|
|
|
|
{
|
unsupported/TensorSymmetry: make symgroup construction autodetect number of indices
When constructing a symmetry group, make the code automatically detect
the number of indices required from the indices of the group's
generators. Also, allow the symmetry group to be applied to lists of
indices that are larger than the number of indices of the symmetry
group.
Before:
SGroup<4, Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
After:
SGroup<Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
group.apply<SomeOp, int>(std::array<int,5>{{0, 1, 2, 3, 4}}, 0);
This should make the symmetry group easier to use - especially if one
wants to reuse the same symmetry group for different tensors of maybe
different rank.
static/runtime asserts remain for the case where the length of the
index list to which a symmetry group is to be applied is too small.
2014-06-05 02:27:42 +08:00
|
|
|
SGroup<Symmetry<0,1>, Symmetry<2,3>> sym;
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
Tensor<int, 4> t(10,10,10,10);
|
|
|
|
|
|
|
|
t.setZero();
|
|
|
|
|
|
|
|
for (int l = 0; l < 10; l++) {
|
|
|
|
for (int k = l; k < 10; k++) {
|
|
|
|
for (int j = 0; j < 10; j++) {
|
|
|
|
for (int i = j; i < 10; i++) {
|
2014-06-05 02:44:22 +08:00
|
|
|
sym(t, i, j, k, l) = (i + j) * (k + l);
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int l = 0; l < 10; l++) {
|
|
|
|
for (int k = 0; k < 10; k++) {
|
|
|
|
for (int j = 0; j < 10; j++) {
|
|
|
|
for (int i = 0; i < 10; i++) {
|
|
|
|
VERIFY_IS_EQUAL((t(i, j, k, l)), ((i + j) * (k + l)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_tensor_asym()
|
|
|
|
{
|
unsupported/TensorSymmetry: make symgroup construction autodetect number of indices
When constructing a symmetry group, make the code automatically detect
the number of indices required from the indices of the group's
generators. Also, allow the symmetry group to be applied to lists of
indices that are larger than the number of indices of the symmetry
group.
Before:
SGroup<4, Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
After:
SGroup<Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
group.apply<SomeOp, int>(std::array<int,5>{{0, 1, 2, 3, 4}}, 0);
This should make the symmetry group easier to use - especially if one
wants to reuse the same symmetry group for different tensors of maybe
different rank.
static/runtime asserts remain for the case where the length of the
index list to which a symmetry group is to be applied is too small.
2014-06-05 02:27:42 +08:00
|
|
|
SGroup<AntiSymmetry<0,1>, AntiSymmetry<2,3>> sym;
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
Tensor<int, 4> t(10,10,10,10);
|
|
|
|
|
|
|
|
t.setZero();
|
|
|
|
|
|
|
|
for (int l = 0; l < 10; l++) {
|
|
|
|
for (int k = l + 1; k < 10; k++) {
|
|
|
|
for (int j = 0; j < 10; j++) {
|
|
|
|
for (int i = j + 1; i < 10; i++) {
|
2014-06-05 02:44:22 +08:00
|
|
|
sym(t, i, j, k, l) = ((i * j) + (k * l));
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int l = 0; l < 10; l++) {
|
|
|
|
for (int k = 0; k < 10; k++) {
|
|
|
|
for (int j = 0; j < 10; j++) {
|
|
|
|
for (int i = 0; i < 10; i++) {
|
|
|
|
if (i < j && k < l)
|
|
|
|
VERIFY_IS_EQUAL((t(i, j, k, l)), (((i * j) + (k * l))));
|
|
|
|
else if (i > j && k > l)
|
|
|
|
VERIFY_IS_EQUAL((t(i, j, k, l)), (((i * j) + (k * l))));
|
|
|
|
else if (i < j && k > l)
|
|
|
|
VERIFY_IS_EQUAL((t(i, j, k, l)), (- ((i * j) + (k * l))));
|
|
|
|
else if (i > j && k < l)
|
|
|
|
VERIFY_IS_EQUAL((t(i, j, k, l)), (- ((i * j) + (k * l))));
|
|
|
|
else
|
|
|
|
VERIFY_IS_EQUAL((t(i, j, k, l)), 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_tensor_dynsym()
|
|
|
|
{
|
unsupported/TensorSymmetry: make symgroup construction autodetect number of indices
When constructing a symmetry group, make the code automatically detect
the number of indices required from the indices of the group's
generators. Also, allow the symmetry group to be applied to lists of
indices that are larger than the number of indices of the symmetry
group.
Before:
SGroup<4, Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
After:
SGroup<Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
group.apply<SomeOp, int>(std::array<int,5>{{0, 1, 2, 3, 4}}, 0);
This should make the symmetry group easier to use - especially if one
wants to reuse the same symmetry group for different tensors of maybe
different rank.
static/runtime asserts remain for the case where the length of the
index list to which a symmetry group is to be applied is too small.
2014-06-05 02:27:42 +08:00
|
|
|
DynamicSGroup sym;
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
sym.addSymmetry(0,1);
|
|
|
|
sym.addSymmetry(2,3);
|
|
|
|
Tensor<int, 4> t(10,10,10,10);
|
|
|
|
|
|
|
|
t.setZero();
|
|
|
|
|
|
|
|
for (int l = 0; l < 10; l++) {
|
|
|
|
for (int k = l; k < 10; k++) {
|
|
|
|
for (int j = 0; j < 10; j++) {
|
|
|
|
for (int i = j; i < 10; i++) {
|
2014-06-05 02:44:22 +08:00
|
|
|
sym(t, i, j, k, l) = (i + j) * (k + l);
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int l = 0; l < 10; l++) {
|
|
|
|
for (int k = 0; k < 10; k++) {
|
|
|
|
for (int j = 0; j < 10; j++) {
|
|
|
|
for (int i = 0; i < 10; i++) {
|
|
|
|
VERIFY_IS_EQUAL((t(i, j, k, l)), ((i + j) * (k + l)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_tensor_randacc()
|
|
|
|
{
|
unsupported/TensorSymmetry: make symgroup construction autodetect number of indices
When constructing a symmetry group, make the code automatically detect
the number of indices required from the indices of the group's
generators. Also, allow the symmetry group to be applied to lists of
indices that are larger than the number of indices of the symmetry
group.
Before:
SGroup<4, Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
After:
SGroup<Symmetry<0, 1>, Symmetry<2,3>> group;
group.apply<SomeOp, int>(std::array<int,4>{{0, 1, 2, 3}}, 0);
group.apply<SomeOp, int>(std::array<int,5>{{0, 1, 2, 3, 4}}, 0);
This should make the symmetry group easier to use - especially if one
wants to reuse the same symmetry group for different tensors of maybe
different rank.
static/runtime asserts remain for the case where the length of the
index list to which a symmetry group is to be applied is too small.
2014-06-05 02:27:42 +08:00
|
|
|
SGroup<Symmetry<0,1>, Symmetry<2,3>> sym;
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
Tensor<int, 4> t(10,10,10,10);
|
|
|
|
|
|
|
|
t.setZero();
|
|
|
|
|
|
|
|
// set elements 1 million times, that way we access the
|
|
|
|
// entire matrix
|
|
|
|
for (int n = 0; n < 1000000; n++) {
|
|
|
|
int i = rand() % 10;
|
|
|
|
int j = rand() % 10;
|
|
|
|
int k = rand() % 10;
|
|
|
|
int l = rand() % 10;
|
|
|
|
// only access those indices in a given order
|
|
|
|
if (i < j)
|
|
|
|
std::swap(i, j);
|
|
|
|
if (k < l)
|
|
|
|
std::swap(k, l);
|
2014-06-05 02:44:22 +08:00
|
|
|
sym(t, i, j, k, l) = (i + j) * (k + l);
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
for (int l = 0; l < 10; l++) {
|
|
|
|
for (int k = 0; k < 10; k++) {
|
|
|
|
for (int j = 0; j < 10; j++) {
|
|
|
|
for (int i = 0; i < 10; i++) {
|
|
|
|
VERIFY_IS_EQUAL((t(i, j, k, l)), ((i + j) * (k + l)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-07-17 20:46:15 +08:00
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_symmetry)
|
CXX11/TensorSymmetry: add symmetry support for Tensor class
Add a symCoeff() method to the Tensor class template that allows the
user of the class to set multiple elements of a tensor at once if they
are connected by a symmetry operation with respect to the tensor's
indices (symmetry/antisymmetry/hermiticity/antihermiticity under
echange of two indices and combination thereof for different pairs of
indices).
A compile-time resolution of the required symmetry groups via meta
templates is also implemented. For small enough groups this is used to
unroll the loop that goes through all the elements of the Tensor that
are connected by this group. For larger groups or groups where the
symmetries are defined at run time, a standard run-time implementation
of the same algorithm is provided.
For example, the following code completely initializes all elements of
the totally antisymmetric tensor in three dimensions ('epsilon
tensor'):
SGroup<3, AntiSymmetry<0,1>, AntiSymmetry<1,2>> sym;
Eigen::Tensor<double, 3> epsilon(3,3,3);
epsilon.setZero();
epsilon.symCoeff(sym, 0, 1, 2) = 1;
2013-11-15 06:35:11 +08:00
|
|
|
{
|
|
|
|
CALL_SUBTEST(test_symgroups_static());
|
|
|
|
CALL_SUBTEST(test_symgroups_dynamic());
|
|
|
|
CALL_SUBTEST(test_symgroups_selection());
|
|
|
|
CALL_SUBTEST(test_tensor_epsilon());
|
|
|
|
CALL_SUBTEST(test_tensor_sym());
|
|
|
|
CALL_SUBTEST(test_tensor_asym());
|
|
|
|
CALL_SUBTEST(test_tensor_dynsym());
|
|
|
|
CALL_SUBTEST(test_tensor_randacc());
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
|
|
|
|
*/
|