2014-09-19 21:25:48 +08:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
# ifndef SVD_DEFAULT
# error a macro SVD_DEFAULT(MatrixType) must be defined prior to including svd_common.h
# endif
# ifndef SVD_FOR_MIN_NORM
# error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
# endif
// Check that the matrix m is properly reconstructed and that the U and V factors are unitary
// The SVD must have already been computed.
template < typename SvdType , typename MatrixType >
void svd_check_full ( const MatrixType & m , const SvdType & svd )
{
typedef typename MatrixType : : Index Index ;
Index rows = m . rows ( ) ;
Index cols = m . cols ( ) ;
enum {
RowsAtCompileTime = MatrixType : : RowsAtCompileTime ,
ColsAtCompileTime = MatrixType : : ColsAtCompileTime
} ;
typedef typename MatrixType : : Scalar Scalar ;
typedef Matrix < Scalar , RowsAtCompileTime , RowsAtCompileTime > MatrixUType ;
typedef Matrix < Scalar , ColsAtCompileTime , ColsAtCompileTime > MatrixVType ;
MatrixType sigma = MatrixType : : Zero ( rows , cols ) ;
sigma . diagonal ( ) = svd . singularValues ( ) . template cast < Scalar > ( ) ;
MatrixUType u = svd . matrixU ( ) ;
MatrixVType v = svd . matrixV ( ) ;
VERIFY_IS_APPROX ( m , u * sigma * v . adjoint ( ) ) ;
VERIFY_IS_UNITARY ( u ) ;
VERIFY_IS_UNITARY ( v ) ;
}
// Compare partial SVD defined by computationOptions to a full SVD referenceSvd
template < typename SvdType , typename MatrixType >
void svd_compare_to_full ( const MatrixType & m ,
unsigned int computationOptions ,
const SvdType & referenceSvd )
{
typedef typename MatrixType : : Index Index ;
Index rows = m . rows ( ) ;
Index cols = m . cols ( ) ;
Index diagSize = ( std : : min ) ( rows , cols ) ;
SvdType svd ( m , computationOptions ) ;
VERIFY_IS_APPROX ( svd . singularValues ( ) , referenceSvd . singularValues ( ) ) ;
if ( computationOptions & ComputeFullU ) VERIFY_IS_APPROX ( svd . matrixU ( ) , referenceSvd . matrixU ( ) ) ;
if ( computationOptions & ComputeThinU ) VERIFY_IS_APPROX ( svd . matrixU ( ) , referenceSvd . matrixU ( ) . leftCols ( diagSize ) ) ;
if ( computationOptions & ComputeFullV ) VERIFY_IS_APPROX ( svd . matrixV ( ) , referenceSvd . matrixV ( ) ) ;
if ( computationOptions & ComputeThinV ) VERIFY_IS_APPROX ( svd . matrixV ( ) , referenceSvd . matrixV ( ) . leftCols ( diagSize ) ) ;
}
//
template < typename SvdType , typename MatrixType >
void svd_least_square ( const MatrixType & m , unsigned int computationOptions )
{
typedef typename MatrixType : : Scalar Scalar ;
typedef typename MatrixType : : RealScalar RealScalar ;
typedef typename MatrixType : : Index Index ;
Index rows = m . rows ( ) ;
Index cols = m . cols ( ) ;
enum {
RowsAtCompileTime = MatrixType : : RowsAtCompileTime ,
ColsAtCompileTime = MatrixType : : ColsAtCompileTime
} ;
typedef Matrix < Scalar , RowsAtCompileTime , Dynamic > RhsType ;
typedef Matrix < Scalar , ColsAtCompileTime , Dynamic > SolutionType ;
RhsType rhs = RhsType : : Random ( rows , internal : : random < Index > ( 1 , cols ) ) ;
SvdType svd ( m , computationOptions ) ;
if ( internal : : is_same < RealScalar , double > : : value ) svd . setThreshold ( 1e-8 ) ;
else if ( internal : : is_same < RealScalar , float > : : value ) svd . setThreshold ( 1e-4 ) ;
SolutionType x = svd . solve ( rhs ) ;
2014-10-15 22:32:16 +08:00
// evaluate normal equation which works also for least-squares solutions
if ( internal : : is_same < RealScalar , double > : : value | | svd . rank ( ) = = m . diagonal ( ) . size ( ) )
{
// This test is not stable with single precision.
// This is probably because squaring m signicantly affects the precision.
VERIFY_IS_APPROX ( m . adjoint ( ) * ( m * x ) , m . adjoint ( ) * rhs ) ;
}
2014-09-19 21:25:48 +08:00
RealScalar residual = ( m * x - rhs ) . norm ( ) ;
// Check that there is no significantly better solution in the neighborhood of x
if ( ! test_isMuchSmallerThan ( residual , rhs . norm ( ) ) )
{
2014-10-15 22:32:16 +08:00
// ^^^ If the residual is very small, then we have an exact solution, so we are already good.
for ( Index k = 0 ; k < x . rows ( ) ; + + k )
2014-09-19 21:25:48 +08:00
{
SolutionType y ( x ) ;
2014-10-15 22:32:16 +08:00
y . row ( k ) = ( 1. + 2 * NumTraits < RealScalar > : : epsilon ( ) ) * x . row ( k ) ;
2014-09-19 21:25:48 +08:00
RealScalar residual_y = ( m * y - rhs ) . norm ( ) ;
VERIFY ( test_isApprox ( residual_y , residual ) | | residual < residual_y ) ;
2014-10-15 22:32:16 +08:00
y . row ( k ) = ( 1. - 2 * NumTraits < RealScalar > : : epsilon ( ) ) * x . row ( k ) ;
2014-09-19 21:25:48 +08:00
residual_y = ( m * y - rhs ) . norm ( ) ;
VERIFY ( test_isApprox ( residual_y , residual ) | | residual < residual_y ) ;
}
}
}
// check minimal norm solutions, the inoput matrix m is only used to recover problem size
template < typename MatrixType >
void svd_min_norm ( const MatrixType & m , unsigned int computationOptions )
{
typedef typename MatrixType : : Scalar Scalar ;
typedef typename MatrixType : : Index Index ;
Index cols = m . cols ( ) ;
enum {
ColsAtCompileTime = MatrixType : : ColsAtCompileTime
} ;
typedef Matrix < Scalar , ColsAtCompileTime , Dynamic > SolutionType ;
// generate a full-rank m x n problem with m<n
enum {
RankAtCompileTime2 = ColsAtCompileTime = = Dynamic ? Dynamic : ( ColsAtCompileTime ) / 2 + 1 ,
RowsAtCompileTime3 = ColsAtCompileTime = = Dynamic ? Dynamic : ColsAtCompileTime + 1
} ;
typedef Matrix < Scalar , RankAtCompileTime2 , ColsAtCompileTime > MatrixType2 ;
typedef Matrix < Scalar , RankAtCompileTime2 , 1 > RhsType2 ;
typedef Matrix < Scalar , ColsAtCompileTime , RankAtCompileTime2 > MatrixType2T ;
Index rank = RankAtCompileTime2 = = Dynamic ? internal : : random < Index > ( 1 , cols ) : Index ( RankAtCompileTime2 ) ;
MatrixType2 m2 ( rank , cols ) ;
int guard = 0 ;
do {
m2 . setRandom ( ) ;
} while ( SVD_FOR_MIN_NORM ( MatrixType2 ) ( m2 ) . setThreshold ( test_precision < Scalar > ( ) ) . rank ( ) ! = rank & & ( + + guard ) < 10 ) ;
VERIFY ( guard < 10 ) ;
2014-10-10 05:29:01 +08:00
2014-09-19 21:25:48 +08:00
RhsType2 rhs2 = RhsType2 : : Random ( rank ) ;
// use QR to find a reference minimal norm solution
HouseholderQR < MatrixType2T > qr ( m2 . adjoint ( ) ) ;
Matrix < Scalar , Dynamic , 1 > tmp = qr . matrixQR ( ) . topLeftCorner ( rank , rank ) . template triangularView < Upper > ( ) . adjoint ( ) . solve ( rhs2 ) ;
tmp . conservativeResize ( cols ) ;
tmp . tail ( cols - rank ) . setZero ( ) ;
SolutionType x21 = qr . householderQ ( ) * tmp ;
// now check with SVD
SVD_FOR_MIN_NORM ( MatrixType2 ) svd2 ( m2 , computationOptions ) ;
SolutionType x22 = svd2 . solve ( rhs2 ) ;
VERIFY_IS_APPROX ( m2 * x21 , rhs2 ) ;
VERIFY_IS_APPROX ( m2 * x22 , rhs2 ) ;
VERIFY_IS_APPROX ( x21 , x22 ) ;
2014-10-10 05:29:01 +08:00
2014-09-19 21:25:48 +08:00
// Now check with a rank deficient matrix
typedef Matrix < Scalar , RowsAtCompileTime3 , ColsAtCompileTime > MatrixType3 ;
typedef Matrix < Scalar , RowsAtCompileTime3 , 1 > RhsType3 ;
Index rows3 = RowsAtCompileTime3 = = Dynamic ? internal : : random < Index > ( rank + 1 , 2 * cols ) : Index ( RowsAtCompileTime3 ) ;
Matrix < Scalar , RowsAtCompileTime3 , Dynamic > C = Matrix < Scalar , RowsAtCompileTime3 , Dynamic > : : Random ( rows3 , rank ) ;
MatrixType3 m3 = C * m2 ;
RhsType3 rhs3 = C * rhs2 ;
SVD_FOR_MIN_NORM ( MatrixType3 ) svd3 ( m3 , computationOptions ) ;
SolutionType x3 = svd3 . solve ( rhs3 ) ;
VERIFY_IS_APPROX ( m3 * x3 , rhs3 ) ;
VERIFY_IS_APPROX ( m3 * x21 , rhs3 ) ;
VERIFY_IS_APPROX ( m2 * x3 , rhs2 ) ;
VERIFY_IS_APPROX ( x21 , x3 ) ;
}
// Check full, compare_to_full, least_square, and min_norm for all possible compute-options
template < typename SvdType , typename MatrixType >
void svd_test_all_computation_options ( const MatrixType & m , bool full_only )
{
// if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
// return;
SvdType fullSvd ( m , ComputeFullU | ComputeFullV ) ;
CALL_SUBTEST ( ( svd_check_full ( m , fullSvd ) ) ) ;
CALL_SUBTEST ( ( svd_least_square < SvdType > ( m , ComputeFullU | ComputeFullV ) ) ) ;
CALL_SUBTEST ( ( svd_min_norm ( m , ComputeFullU | ComputeFullV ) ) ) ;
# if defined __INTEL_COMPILER
// remark #111: statement is unreachable
# pragma warning disable 111
# endif
if ( full_only )
return ;
CALL_SUBTEST ( ( svd_compare_to_full ( m , ComputeFullU , fullSvd ) ) ) ;
CALL_SUBTEST ( ( svd_compare_to_full ( m , ComputeFullV , fullSvd ) ) ) ;
CALL_SUBTEST ( ( svd_compare_to_full ( m , 0 , fullSvd ) ) ) ;
if ( MatrixType : : ColsAtCompileTime = = Dynamic ) {
// thin U/V are only available with dynamic number of columns
CALL_SUBTEST ( ( svd_compare_to_full ( m , ComputeFullU | ComputeThinV , fullSvd ) ) ) ;
CALL_SUBTEST ( ( svd_compare_to_full ( m , ComputeThinV , fullSvd ) ) ) ;
CALL_SUBTEST ( ( svd_compare_to_full ( m , ComputeThinU | ComputeFullV , fullSvd ) ) ) ;
CALL_SUBTEST ( ( svd_compare_to_full ( m , ComputeThinU , fullSvd ) ) ) ;
CALL_SUBTEST ( ( svd_compare_to_full ( m , ComputeThinU | ComputeThinV , fullSvd ) ) ) ;
CALL_SUBTEST ( ( svd_least_square < SvdType > ( m , ComputeFullU | ComputeThinV ) ) ) ;
CALL_SUBTEST ( ( svd_least_square < SvdType > ( m , ComputeThinU | ComputeFullV ) ) ) ;
CALL_SUBTEST ( ( svd_least_square < SvdType > ( m , ComputeThinU | ComputeThinV ) ) ) ;
2014-10-10 05:29:01 +08:00
2014-09-19 21:25:48 +08:00
CALL_SUBTEST ( ( svd_min_norm ( m , ComputeFullU | ComputeThinV ) ) ) ;
CALL_SUBTEST ( ( svd_min_norm ( m , ComputeThinU | ComputeFullV ) ) ) ;
CALL_SUBTEST ( ( svd_min_norm ( m , ComputeThinU | ComputeThinV ) ) ) ;
// test reconstruction
typedef typename MatrixType : : Index Index ;
Index diagSize = ( std : : min ) ( m . rows ( ) , m . cols ( ) ) ;
SvdType svd ( m , ComputeThinU | ComputeThinV ) ;
VERIFY_IS_APPROX ( m , svd . matrixU ( ) . leftCols ( diagSize ) * svd . singularValues ( ) . asDiagonal ( ) * svd . matrixV ( ) . leftCols ( diagSize ) . adjoint ( ) ) ;
}
}
template < typename MatrixType >
void svd_fill_random ( MatrixType & m )
{
typedef typename MatrixType : : Scalar Scalar ;
typedef typename MatrixType : : RealScalar RealScalar ;
typedef typename MatrixType : : Index Index ;
Index diagSize = ( std : : min ) ( m . rows ( ) , m . cols ( ) ) ;
RealScalar s = std : : numeric_limits < RealScalar > : : max_exponent10 / 4 ;
s = internal : : random < RealScalar > ( 1 , s ) ;
Matrix < RealScalar , Dynamic , 1 > d = Matrix < RealScalar , Dynamic , 1 > : : Random ( diagSize ) ;
for ( Index k = 0 ; k < diagSize ; + + k )
d ( k ) = d ( k ) * std : : pow ( RealScalar ( 10 ) , internal : : random < RealScalar > ( - s , s ) ) ;
2014-10-15 22:32:16 +08:00
bool dup = internal : : random < int > ( 0 , 10 ) < 3 ;
bool unit_uv = internal : : random < int > ( 0 , 10 ) < ( dup ? 7 : 3 ) ; // if we duplicate some diagonal entries, then increase the chance to preserve them using unitary U and V factors
// duplicate some singular values
if ( dup )
{
Index n = internal : : random < Index > ( 0 , d . size ( ) - 1 ) ;
for ( Index i = 0 ; i < n ; + + i )
d ( internal : : random < Index > ( 0 , d . size ( ) - 1 ) ) = d ( internal : : random < Index > ( 0 , d . size ( ) - 1 ) ) ;
}
Matrix < Scalar , Dynamic , Dynamic > U ( m . rows ( ) , diagSize ) ;
Matrix < Scalar , Dynamic , Dynamic > VT ( diagSize , m . cols ( ) ) ;
if ( unit_uv )
{
// in very rare cases let's try with a pure diagonal matrix
if ( internal : : random < int > ( 0 , 10 ) < 1 )
{
U . setIdentity ( ) ;
VT . setIdentity ( ) ;
}
else
{
createRandomPIMatrixOfRank ( diagSize , U . rows ( ) , U . cols ( ) , U ) ;
createRandomPIMatrixOfRank ( diagSize , VT . rows ( ) , VT . cols ( ) , VT ) ;
}
}
else
{
U . setRandom ( ) ;
VT . setRandom ( ) ;
}
m = U * d . asDiagonal ( ) * VT ;
2014-10-16 05:37:47 +08:00
// (partly) cancel some coeffs
2014-10-15 22:32:16 +08:00
if ( ! ( dup & & unit_uv ) )
{
2014-10-16 05:37:47 +08:00
Matrix < Scalar , Dynamic , 1 > samples ( 7 ) ;
samples < < 0 , 5.60844e-313 , - 5.60844e-313 , 4.94e-324 , - 4.94e-324 , - 1. / NumTraits < RealScalar > : : highest ( ) , 1. / NumTraits < RealScalar > : : highest ( ) ;
Index n = internal : : random < Index > ( 0 , m . size ( ) - 1 ) ;
2014-10-15 22:32:16 +08:00
for ( Index i = 0 ; i < n ; + + i )
2014-10-16 05:37:47 +08:00
m ( internal : : random < Index > ( 0 , m . rows ( ) - 1 ) , internal : : random < Index > ( 0 , m . cols ( ) - 1 ) ) = samples ( internal : : random < Index > ( 0 , 6 ) ) ;
2014-10-15 22:32:16 +08:00
}
2014-09-19 21:25:48 +08:00
}
// work around stupid msvc error when constructing at compile time an expression that involves
// a division by zero, even if the numeric type has floating point
template < typename Scalar >
EIGEN_DONT_INLINE Scalar zero ( ) { return Scalar ( 0 ) ; }
// workaround aggressive optimization in ICC
template < typename T > EIGEN_DONT_INLINE T sub ( T a , T b ) { return a - b ; }
// all this function does is verify we don't iterate infinitely on nan/inf values
template < typename SvdType , typename MatrixType >
void svd_inf_nan ( )
{
SvdType svd ;
typedef typename MatrixType : : Scalar Scalar ;
Scalar some_inf = Scalar ( 1 ) / zero < Scalar > ( ) ;
VERIFY ( sub ( some_inf , some_inf ) ! = sub ( some_inf , some_inf ) ) ;
svd . compute ( MatrixType : : Constant ( 10 , 10 , some_inf ) , ComputeFullU | ComputeFullV ) ;
Scalar nan = std : : numeric_limits < Scalar > : : quiet_NaN ( ) ;
VERIFY ( nan ! = nan ) ;
svd . compute ( MatrixType : : Constant ( 10 , 10 , nan ) , ComputeFullU | ComputeFullV ) ;
MatrixType m = MatrixType : : Zero ( 10 , 10 ) ;
m ( internal : : random < int > ( 0 , 9 ) , internal : : random < int > ( 0 , 9 ) ) = some_inf ;
svd . compute ( m , ComputeFullU | ComputeFullV ) ;
m = MatrixType : : Zero ( 10 , 10 ) ;
m ( internal : : random < int > ( 0 , 9 ) , internal : : random < int > ( 0 , 9 ) ) = nan ;
svd . compute ( m , ComputeFullU | ComputeFullV ) ;
// regression test for bug 791
m . resize ( 3 , 3 ) ;
m < < 0 , 2 * NumTraits < Scalar > : : epsilon ( ) , 0.5 ,
0 , - 0.5 , 0 ,
nan , 0 , 0 ;
svd . compute ( m , ComputeFullU | ComputeFullV ) ;
m . resize ( 4 , 4 ) ;
m < < 1 , 0 , 0 , 0 ,
0 , 3 , 1 , 2e-308 ,
1 , 0 , 1 , nan ,
0 , nan , nan , 0 ;
svd . compute ( m , ComputeFullU | ComputeFullV ) ;
}
// Regression test for bug 286: JacobiSVD loops indefinitely with some
// matrices containing denormal numbers.
void svd_underoverflow ( )
{
# if defined __INTEL_COMPILER
// shut up warning #239: floating point underflow
# pragma warning push
# pragma warning disable 239
# endif
Matrix2d M ;
M < < - 7.90884e-313 , - 4.94e-324 ,
0 , 5.60844e-313 ;
SVD_DEFAULT ( Matrix2d ) svd ;
svd . compute ( M , ComputeFullU | ComputeFullV ) ;
2014-10-07 01:35:57 +08:00
CALL_SUBTEST ( svd_check_full ( M , svd ) ) ;
2014-09-19 21:25:48 +08:00
// Check all 2x2 matrices made with the following coefficients:
VectorXd value_set ( 9 ) ;
value_set < < 0 , 1 , - 1 , 5.60844e-313 , - 5.60844e-313 , 4.94e-324 , - 4.94e-324 , - 4.94e-223 , 4.94e-223 ;
Array4i id ( 0 , 0 , 0 , 0 ) ;
int k = 0 ;
do
{
M < < value_set ( id ( 0 ) ) , value_set ( id ( 1 ) ) , value_set ( id ( 2 ) ) , value_set ( id ( 3 ) ) ;
svd . compute ( M , ComputeFullU | ComputeFullV ) ;
2014-10-07 01:35:57 +08:00
CALL_SUBTEST ( svd_check_full ( M , svd ) ) ;
2014-09-19 21:25:48 +08:00
id ( k ) + + ;
if ( id ( k ) > = value_set . size ( ) )
{
while ( k < 3 & & id ( k ) > = value_set . size ( ) ) id ( + + k ) + + ;
id . head ( k ) . setZero ( ) ;
k = 0 ;
}
} while ( ( id < int ( value_set . size ( ) ) ) . all ( ) ) ;
# if defined __INTEL_COMPILER
# pragma warning pop
# endif
// Check for overflow:
Matrix3d M3 ;
M3 < < 4.4331978442502944e+307 , - 5.8585363752028680e+307 , 6.4527017443412964e+307 ,
3.7841695601406358e+307 , 2.4331702789740617e+306 , - 3.5235707140272905e+307 ,
- 8.7190887618028355e+307 , - 7.3453213709232193e+307 , - 2.4367363684472105e+307 ;
SVD_DEFAULT ( Matrix3d ) svd3 ;
svd3 . compute ( M3 , ComputeFullU | ComputeFullV ) ; // just check we don't loop indefinitely
2014-10-07 01:35:57 +08:00
CALL_SUBTEST ( svd_check_full ( M3 , svd3 ) ) ;
2014-09-19 21:25:48 +08:00
}
// void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
template < typename MatrixType >
void svd_all_trivial_2x2 ( void ( * cb ) ( const MatrixType & , bool ) )
{
MatrixType M ;
VectorXd value_set ( 3 ) ;
value_set < < 0 , 1 , - 1 ;
Array4i id ( 0 , 0 , 0 , 0 ) ;
int k = 0 ;
do
{
M < < value_set ( id ( 0 ) ) , value_set ( id ( 1 ) ) , value_set ( id ( 2 ) ) , value_set ( id ( 3 ) ) ;
cb ( M , false ) ;
id ( k ) + + ;
if ( id ( k ) > = value_set . size ( ) )
{
while ( k < 3 & & id ( k ) > = value_set . size ( ) ) id ( + + k ) + + ;
id . head ( k ) . setZero ( ) ;
k = 0 ;
}
} while ( ( id < int ( value_set . size ( ) ) ) . all ( ) ) ;
}
void svd_preallocate ( )
{
Vector3f v ( 3.f , 2.f , 1.f ) ;
MatrixXf m = v . asDiagonal ( ) ;
internal : : set_is_malloc_allowed ( false ) ;
VERIFY_RAISES_ASSERT ( VectorXf tmp ( 10 ) ; )
SVD_DEFAULT ( MatrixXf ) svd ;
internal : : set_is_malloc_allowed ( true ) ;
svd . compute ( m ) ;
VERIFY_IS_APPROX ( svd . singularValues ( ) , v ) ;
SVD_DEFAULT ( MatrixXf ) svd2 ( 3 , 3 ) ;
internal : : set_is_malloc_allowed ( false ) ;
svd2 . compute ( m ) ;
internal : : set_is_malloc_allowed ( true ) ;
VERIFY_IS_APPROX ( svd2 . singularValues ( ) , v ) ;
VERIFY_RAISES_ASSERT ( svd2 . matrixU ( ) ) ;
VERIFY_RAISES_ASSERT ( svd2 . matrixV ( ) ) ;
svd2 . compute ( m , ComputeFullU | ComputeFullV ) ;
VERIFY_IS_APPROX ( svd2 . matrixU ( ) , Matrix3f : : Identity ( ) ) ;
VERIFY_IS_APPROX ( svd2 . matrixV ( ) , Matrix3f : : Identity ( ) ) ;
internal : : set_is_malloc_allowed ( false ) ;
svd2 . compute ( m ) ;
internal : : set_is_malloc_allowed ( true ) ;
SVD_DEFAULT ( MatrixXf ) svd3 ( 3 , 3 , ComputeFullU | ComputeFullV ) ;
internal : : set_is_malloc_allowed ( false ) ;
svd2 . compute ( m ) ;
internal : : set_is_malloc_allowed ( true ) ;
VERIFY_IS_APPROX ( svd2 . singularValues ( ) , v ) ;
VERIFY_IS_APPROX ( svd2 . matrixU ( ) , Matrix3f : : Identity ( ) ) ;
VERIFY_IS_APPROX ( svd2 . matrixV ( ) , Matrix3f : : Identity ( ) ) ;
internal : : set_is_malloc_allowed ( false ) ;
svd2 . compute ( m , ComputeFullU | ComputeFullV ) ;
internal : : set_is_malloc_allowed ( true ) ;
}
template < typename SvdType , typename MatrixType >
void svd_verify_assert ( const MatrixType & m )
{
typedef typename MatrixType : : Scalar Scalar ;
typedef typename MatrixType : : Index Index ;
Index rows = m . rows ( ) ;
Index cols = m . cols ( ) ;
enum {
RowsAtCompileTime = MatrixType : : RowsAtCompileTime ,
ColsAtCompileTime = MatrixType : : ColsAtCompileTime
} ;
typedef Matrix < Scalar , RowsAtCompileTime , 1 > RhsType ;
RhsType rhs ( rows ) ;
SvdType svd ;
VERIFY_RAISES_ASSERT ( svd . matrixU ( ) )
VERIFY_RAISES_ASSERT ( svd . singularValues ( ) )
VERIFY_RAISES_ASSERT ( svd . matrixV ( ) )
VERIFY_RAISES_ASSERT ( svd . solve ( rhs ) )
MatrixType a = MatrixType : : Zero ( rows , cols ) ;
a . setZero ( ) ;
svd . compute ( a , 0 ) ;
VERIFY_RAISES_ASSERT ( svd . matrixU ( ) )
VERIFY_RAISES_ASSERT ( svd . matrixV ( ) )
svd . singularValues ( ) ;
VERIFY_RAISES_ASSERT ( svd . solve ( rhs ) )
if ( ColsAtCompileTime = = Dynamic )
{
svd . compute ( a , ComputeThinU ) ;
svd . matrixU ( ) ;
VERIFY_RAISES_ASSERT ( svd . matrixV ( ) )
VERIFY_RAISES_ASSERT ( svd . solve ( rhs ) )
svd . compute ( a , ComputeThinV ) ;
svd . matrixV ( ) ;
VERIFY_RAISES_ASSERT ( svd . matrixU ( ) )
VERIFY_RAISES_ASSERT ( svd . solve ( rhs ) )
}
else
{
VERIFY_RAISES_ASSERT ( svd . compute ( a , ComputeThinU ) )
VERIFY_RAISES_ASSERT ( svd . compute ( a , ComputeThinV ) )
}
}
# undef SVD_DEFAULT
# undef SVD_FOR_MIN_NORM