mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
69 lines
2.3 KiB
C++
69 lines
2.3 KiB
C++
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||
|
//
|
||
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||
|
//
|
||
|
// Eigen is free software; you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public
|
||
|
// License as published by the Free Software Foundation; either
|
||
|
// version 3 of the License, or (at your option) any later version.
|
||
|
//
|
||
|
// Alternatively, you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU General Public License as
|
||
|
// published by the Free Software Foundation; either version 2 of
|
||
|
// the License, or (at your option) any later version.
|
||
|
//
|
||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||
|
// GNU General Public License for more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU Lesser General Public
|
||
|
// License and a copy of the GNU General Public License along with
|
||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||
|
|
||
|
#include "main.h"
|
||
|
#include <Eigen/SVD>
|
||
|
|
||
|
template<typename MatrixType> void svd(const MatrixType& m)
|
||
|
{
|
||
|
/* this test covers the following files:
|
||
|
SVD.h
|
||
|
*/
|
||
|
int rows = m.rows();
|
||
|
int cols = m.cols();
|
||
|
|
||
|
typedef typename MatrixType::Scalar Scalar;
|
||
|
MatrixType a = MatrixType::Random(rows,cols);
|
||
|
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> b =
|
||
|
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1>::Random(rows,1);
|
||
|
Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> x(cols,1), x2(cols,1);
|
||
|
|
||
|
SVD<MatrixType> svd(a);
|
||
|
MatrixType sigma = MatrixType::Zero(rows,cols);
|
||
|
MatrixType matU = MatrixType::Zero(rows,rows);
|
||
|
sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal();
|
||
|
matU.block(0,0,rows,cols) = svd.matrixU();
|
||
|
|
||
|
VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose());
|
||
|
|
||
|
if (rows==cols)
|
||
|
{
|
||
|
svd.solve(b, &x);
|
||
|
VERIFY_IS_APPROX(a * x, b);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void test_svd()
|
||
|
{
|
||
|
for(int i = 0; i < g_repeat; i++) {
|
||
|
CALL_SUBTEST( svd(Matrix3f()) );
|
||
|
CALL_SUBTEST( svd(Matrix4d()) );
|
||
|
CALL_SUBTEST( svd(MatrixXf(7,7)) );
|
||
|
CALL_SUBTEST( svd(MatrixXf(14,7)) );
|
||
|
// complex are not implemented yet
|
||
|
// CALL_SUBTEST( svd(MatrixXcd(6,6)) );
|
||
|
// CALL_SUBTEST( svd(MatrixXcf(3,3)) );
|
||
|
}
|
||
|
}
|