eigen/unsupported/test/BVH.cpp

228 lines
7.6 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
2009-05-09 11:41:17 +08:00
#include <Eigen/StdVector>
#include <unsupported/Eigen/BVH>
inline double SQR(double x) { return x * x; }
template<int Dim>
struct Ball
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(double, Dim)
typedef Matrix<double, Dim, 1> VectorType;
Ball() {}
Ball(const VectorType &c, double r) : center(c), radius(r) {}
VectorType center;
double radius;
};
2009-05-09 11:41:17 +08:00
template<typename Scalar, int Dim> AlignedBox<Scalar, Dim> ei_bounding_box(const Matrix<Scalar, Dim, 1> &v) { return AlignedBox<Scalar, Dim>(v); }
template<int Dim> AlignedBox<double, Dim> ei_bounding_box(const Ball<Dim> &b)
{ return AlignedBox<double, Dim>(b.center.cwise() - b.radius, b.center.cwise() + b.radius); }
template<int Dim>
struct BallPointStuff //this class provides functions to be both an intersector and a minimizer, both for a ball and a point and for two trees
{
typedef double Scalar;
typedef Matrix<double, Dim, 1> VectorType;
typedef Ball<Dim> BallType;
typedef AlignedBox<double, Dim> BoxType;
BallPointStuff() : calls(0), count(0) {}
BallPointStuff(const VectorType &inP) : p(inP), calls(0), count(0) {}
bool intersectVolume(const BoxType &r) { ++calls; return r.contains(p); }
bool intersectObject(const BallType &b) {
++calls;
if((b.center - p).squaredNorm() < SQR(b.radius))
++count;
return false; //continue
}
bool intersectVolumeVolume(const BoxType &r1, const BoxType &r2) { ++calls; return !(r1.intersection(r2)).isNull(); }
bool intersectVolumeObject(const BoxType &r, const BallType &b) { ++calls; return r.squaredExteriorDistance(b.center) < SQR(b.radius); }
bool intersectObjectVolume(const BallType &b, const BoxType &r) { ++calls; return r.squaredExteriorDistance(b.center) < SQR(b.radius); }
bool intersectObjectObject(const BallType &b1, const BallType &b2){
++calls;
if((b1.center - b2.center).norm() < b1.radius + b2.radius)
++count;
return false;
}
bool intersectVolumeObject(const BoxType &r, const VectorType &v) { ++calls; return r.contains(v); }
bool intersectObjectObject(const BallType &b, const VectorType &v){
++calls;
if((b.center - v).squaredNorm() < SQR(b.radius))
++count;
return false;
}
double minimumOnVolume(const BoxType &r) { ++calls; return r.squaredExteriorDistance(p); }
double minimumOnObject(const BallType &b) { ++calls; return std::max(0., (b.center - p).squaredNorm() - SQR(b.radius)); }
double minimumOnVolumeVolume(const BoxType &r1, const BoxType &r2) { ++calls; return r1.squaredExteriorDistance(r2); }
double minimumOnVolumeObject(const BoxType &r, const BallType &b) { ++calls; return SQR(std::max(0., r.exteriorDistance(b.center) - b.radius)); }
double minimumOnObjectVolume(const BallType &b, const BoxType &r) { ++calls; return SQR(std::max(0., r.exteriorDistance(b.center) - b.radius)); }
double minimumOnObjectObject(const BallType &b1, const BallType &b2){ ++calls; return SQR(std::max(0., (b1.center - b2.center).norm() - b1.radius - b2.radius)); }
double minimumOnVolumeObject(const BoxType &r, const VectorType &v) { ++calls; return r.squaredExteriorDistance(v); }
double minimumOnObjectObject(const BallType &b, const VectorType &v){ ++calls; return SQR(std::max(0., (b.center - v).norm() - b.radius)); }
VectorType p;
int calls;
int count;
};
template<int Dim>
struct TreeTest
{
typedef Matrix<double, Dim, 1> VectorType;
typedef std::vector<VectorType, aligned_allocator<VectorType> > VectorTypeList;
typedef Ball<Dim> BallType;
typedef std::vector<BallType, aligned_allocator<BallType> > BallTypeList;
typedef AlignedBox<double, Dim> BoxType;
void testIntersect1()
{
BallTypeList b;
for(int i = 0; i < 500; ++i) {
b.push_back(BallType(VectorType::Random(), 0.5 * ei_random(0., 1.)));
}
KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
VectorType pt = VectorType::Random();
BallPointStuff<Dim> i1(pt), i2(pt);
for(int i = 0; i < (int)b.size(); ++i)
i1.intersectObject(b[i]);
BVIntersect(tree, i2);
VERIFY(i1.count == i2.count);
}
void testMinimize1()
{
BallTypeList b;
for(int i = 0; i < 500; ++i) {
b.push_back(BallType(VectorType::Random(), 0.01 * ei_random(0., 1.)));
}
KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
VectorType pt = VectorType::Random();
BallPointStuff<Dim> i1(pt), i2(pt);
double m1 = std::numeric_limits<double>::max(), m2 = m1;
for(int i = 0; i < (int)b.size(); ++i)
m1 = std::min(m1, i1.minimumOnObject(b[i]));
m2 = BVMinimize(tree, i2);
VERIFY_IS_APPROX(m1, m2);
}
void testIntersect2()
{
BallTypeList b;
VectorTypeList v;
for(int i = 0; i < 50; ++i) {
b.push_back(BallType(VectorType::Random(), 0.5 * ei_random(0., 1.)));
for(int j = 0; j < 3; ++j)
v.push_back(VectorType::Random());
}
KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end());
BallPointStuff<Dim> i1, i2;
for(int i = 0; i < (int)b.size(); ++i)
for(int j = 0; j < (int)v.size(); ++j)
i1.intersectObjectObject(b[i], v[j]);
BVIntersect(tree, vTree, i2);
VERIFY(i1.count == i2.count);
}
void testMinimize2()
{
BallTypeList b;
VectorTypeList v;
for(int i = 0; i < 50; ++i) {
b.push_back(BallType(VectorType::Random(), 1e-7 + 1e-6 * ei_random(0., 1.)));
for(int j = 0; j < 3; ++j)
v.push_back(VectorType::Random());
}
KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end());
BallPointStuff<Dim> i1, i2;
double m1 = std::numeric_limits<double>::max(), m2 = m1;
for(int i = 0; i < (int)b.size(); ++i)
for(int j = 0; j < (int)v.size(); ++j)
m1 = std::min(m1, i1.minimumOnObjectObject(b[i], v[j]));
m2 = BVMinimize(tree, vTree, i2);
VERIFY_IS_APPROX(m1, m2);
}
};
void test_BVH()
{
for(int i = 0; i < g_repeat; i++) {
TreeTest<2> test2;
CALL_SUBTEST(test2.testIntersect1());
CALL_SUBTEST(test2.testMinimize1());
CALL_SUBTEST(test2.testIntersect2());
CALL_SUBTEST(test2.testMinimize2());
TreeTest<3> test3;
CALL_SUBTEST(test3.testIntersect1());
CALL_SUBTEST(test3.testMinimize1());
CALL_SUBTEST(test3.testIntersect2());
CALL_SUBTEST(test3.testMinimize2());
TreeTest<4> test4;
CALL_SUBTEST(test4.testIntersect1());
CALL_SUBTEST(test4.testMinimize1());
CALL_SUBTEST(test4.testIntersect2());
CALL_SUBTEST(test4.testMinimize2());
}
}