eigen/unsupported/test/polynomialutils.cpp

125 lines
4.2 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <unsupported/Eigen/Polynomials>
#include <iostream>
using namespace std;
template<int Size>
struct ei_increment_if_fixed_size
{
enum {
ret = (Size == Dynamic) ? Dynamic : Size+1
};
};
template<typename _Scalar, int _Deg>
void realRoots_to_monicPolynomial_test(int deg)
{
typedef ei_increment_if_fixed_size<_Deg> Dim;
typedef Matrix<_Scalar,Dim::ret,1> PolynomialType;
typedef Matrix<_Scalar,_Deg,1> EvalRootsType;
PolynomialType pols(deg+1);
EvalRootsType roots = EvalRootsType::Random(deg);
roots_to_monicPolynomial( roots, pols );
EvalRootsType evr( deg );
for( int i=0; i<roots.size(); ++i ){
evr[i] = std::abs( poly_eval( pols, roots[i] ) ); }
bool evalToZero = evr.isZero( test_precision<_Scalar>() );
if( !evalToZero ){
cerr << evr.transpose() << endl; }
VERIFY( evalToZero );
}
template<typename _Scalar> void realRoots_to_monicPolynomial_scalar()
{
CALL_SUBTEST_2( (realRoots_to_monicPolynomial_test<_Scalar,2>(2)) );
CALL_SUBTEST_3( (realRoots_to_monicPolynomial_test<_Scalar,3>(3)) );
CALL_SUBTEST_4( (realRoots_to_monicPolynomial_test<_Scalar,4>(4)) );
CALL_SUBTEST_5( (realRoots_to_monicPolynomial_test<_Scalar,5>(5)) );
CALL_SUBTEST_6( (realRoots_to_monicPolynomial_test<_Scalar,6>(6)) );
CALL_SUBTEST_7( (realRoots_to_monicPolynomial_test<_Scalar,7>(7)) );
CALL_SUBTEST_8( (realRoots_to_monicPolynomial_test<_Scalar,17>(17)) );
CALL_SUBTEST_9( (realRoots_to_monicPolynomial_test<_Scalar,Dynamic>(
ei_random<int>(18,26) )) );
}
template<typename _Scalar, int _Deg>
void CauchyBounds(int deg)
{
typedef ei_increment_if_fixed_size<_Deg> Dim;
typedef Matrix<_Scalar,Dim::ret,1> PolynomialType;
typedef Matrix<_Scalar,_Deg,1> EvalRootsType;
PolynomialType pols(deg+1);
EvalRootsType roots = EvalRootsType::Random(deg);
roots_to_monicPolynomial( roots, pols );
_Scalar M = cauchy_max_bound( pols );
_Scalar m = cauchy_min_bound( pols );
_Scalar Max = roots.array().abs().maxCoeff();
_Scalar min = roots.array().abs().minCoeff();
bool eval = (M >= Max) && (m <= min);
if( !eval )
{
cerr << "Roots: " << roots << endl;
cerr << "Bounds: (" << m << ", " << M << ")" << endl;
cerr << "Min,Max: (" << min << ", " << Max << ")" << endl;
}
VERIFY( eval );
}
template<typename _Scalar> void CauchyBounds_scalar()
{
CALL_SUBTEST_2( (CauchyBounds<_Scalar,2>(2)) );
CALL_SUBTEST_3( (CauchyBounds<_Scalar,3>(3)) );
CALL_SUBTEST_4( (CauchyBounds<_Scalar,4>(4)) );
CALL_SUBTEST_5( (CauchyBounds<_Scalar,5>(5)) );
CALL_SUBTEST_6( (CauchyBounds<_Scalar,6>(6)) );
CALL_SUBTEST_7( (CauchyBounds<_Scalar,7>(7)) );
CALL_SUBTEST_8( (CauchyBounds<_Scalar,17>(17)) );
CALL_SUBTEST_9( (CauchyBounds<_Scalar,Dynamic>(
ei_random<int>(18,26) )) );
}
void test_polynomialutils()
{
for(int i = 0; i < g_repeat; i++)
{
realRoots_to_monicPolynomial_scalar<double>();
realRoots_to_monicPolynomial_scalar<float>();
CauchyBounds_scalar<double>();
CauchyBounds_scalar<float>();
}
}