mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
164 lines
5.1 KiB
C++
164 lines
5.1 KiB
C++
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||
|
//
|
||
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||
|
//
|
||
|
// Eigen is free software; you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public
|
||
|
// License as published by the Free Software Foundation; either
|
||
|
// version 3 of the License, or (at your option) any later version.
|
||
|
//
|
||
|
// Alternatively, you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU General Public License as
|
||
|
// published by the Free Software Foundation; either version 2 of
|
||
|
// the License, or (at your option) any later version.
|
||
|
//
|
||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||
|
// GNU General Public License for more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU Lesser General Public
|
||
|
// License and a copy of the GNU General Public License along with
|
||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||
|
|
||
|
#include <Eigen/StdVector>
|
||
|
#include "main.h"
|
||
|
#include <Eigen/Geometry>
|
||
|
|
||
|
template<typename MatrixType>
|
||
|
void check_stdvector_matrix(const MatrixType& m)
|
||
|
{
|
||
|
int rows = m.rows();
|
||
|
int cols = m.cols();
|
||
|
MatrixType x = MatrixType::Random(rows,cols), y = MatrixType::Random(rows,cols);
|
||
|
std::vector<MatrixType> v(10, MatrixType(rows,cols)), w(20, y);
|
||
|
v[5] = x;
|
||
|
w[6] = v[5];
|
||
|
VERIFY_IS_APPROX(w[6], v[5]);
|
||
|
v = w;
|
||
|
for(int i = 0; i < 20; i++)
|
||
|
{
|
||
|
VERIFY_IS_APPROX(w[i], v[i]);
|
||
|
}
|
||
|
|
||
|
v.resize(21);
|
||
|
v[20] = x;
|
||
|
VERIFY_IS_APPROX(v[20], x);
|
||
|
v.resize(22,y);
|
||
|
VERIFY_IS_APPROX(v[21], y);
|
||
|
v.push_back(x);
|
||
|
VERIFY_IS_APPROX(v[22], x);
|
||
|
VERIFY((std::size_t)&(v[22]) == (std::size_t)&(v[21]) + sizeof(MatrixType));
|
||
|
|
||
|
// do a lot of push_back such that the vector gets internally resized
|
||
|
// (with memory reallocation)
|
||
|
MatrixType* ref = &w[0];
|
||
|
for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
|
||
|
v.push_back(w[i%w.size()]);
|
||
|
for(unsigned int i=23; i<v.size(); ++i)
|
||
|
{
|
||
|
VERIFY(v[i]==w[(i-23)%w.size()]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<typename TransformType>
|
||
|
void check_stdvector_transform(const TransformType&)
|
||
|
{
|
||
|
typedef typename TransformType::MatrixType MatrixType;
|
||
|
TransformType x(MatrixType::Random()), y(MatrixType::Random());
|
||
|
std::vector<TransformType> v(10), w(20, y);
|
||
|
v[5] = x;
|
||
|
w[6] = v[5];
|
||
|
VERIFY_IS_APPROX(w[6], v[5]);
|
||
|
v = w;
|
||
|
for(int i = 0; i < 20; i++)
|
||
|
{
|
||
|
VERIFY_IS_APPROX(w[i], v[i]);
|
||
|
}
|
||
|
|
||
|
v.resize(21);
|
||
|
v[20] = x;
|
||
|
VERIFY_IS_APPROX(v[20], x);
|
||
|
v.resize(22,y);
|
||
|
VERIFY_IS_APPROX(v[21], y);
|
||
|
v.push_back(x);
|
||
|
VERIFY_IS_APPROX(v[22], x);
|
||
|
VERIFY((std::size_t)&(v[22]) == (std::size_t)&(v[21]) + sizeof(TransformType));
|
||
|
|
||
|
// do a lot of push_back such that the vector gets internally resized
|
||
|
// (with memory reallocation)
|
||
|
TransformType* ref = &w[0];
|
||
|
for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
|
||
|
v.push_back(w[i%w.size()]);
|
||
|
for(unsigned int i=23; i<v.size(); ++i)
|
||
|
{
|
||
|
VERIFY(v[i].matrix()==w[(i-23)%w.size()].matrix());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<typename QuaternionType>
|
||
|
void check_stdvector_quaternion(const QuaternionType&)
|
||
|
{
|
||
|
typedef typename QuaternionType::Coefficients Coefficients;
|
||
|
QuaternionType x(Coefficients::Random()), y(Coefficients::Random());
|
||
|
std::vector<QuaternionType> v(10), w(20, y);
|
||
|
v[5] = x;
|
||
|
w[6] = v[5];
|
||
|
VERIFY_IS_APPROX(w[6], v[5]);
|
||
|
v = w;
|
||
|
for(int i = 0; i < 20; i++)
|
||
|
{
|
||
|
VERIFY_IS_APPROX(w[i], v[i]);
|
||
|
}
|
||
|
|
||
|
v.resize(21);
|
||
|
v[20] = x;
|
||
|
VERIFY_IS_APPROX(v[20], x);
|
||
|
v.resize(22,y);
|
||
|
VERIFY_IS_APPROX(v[21], y);
|
||
|
v.push_back(x);
|
||
|
VERIFY_IS_APPROX(v[22], x);
|
||
|
VERIFY((std::size_t)&(v[22]) == (std::size_t)&(v[21]) + sizeof(QuaternionType));
|
||
|
|
||
|
// do a lot of push_back such that the vector gets internally resized
|
||
|
// (with memory reallocation)
|
||
|
QuaternionType* ref = &w[0];
|
||
|
for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
|
||
|
v.push_back(w[i%w.size()]);
|
||
|
for(unsigned int i=23; i<v.size(); ++i)
|
||
|
{
|
||
|
VERIFY(v[i].coeffs()==w[(i-23)%w.size()].coeffs());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void test_stdvector()
|
||
|
{
|
||
|
// some non vectorizable fixed sizes
|
||
|
CALL_SUBTEST(check_stdvector_matrix(Vector2f()));
|
||
|
CALL_SUBTEST(check_stdvector_matrix(Matrix3f()));
|
||
|
CALL_SUBTEST(check_stdvector_matrix(Matrix3d()));
|
||
|
|
||
|
// some vectorizable fixed sizes
|
||
|
CALL_SUBTEST(check_stdvector_matrix(Matrix2f()));
|
||
|
CALL_SUBTEST(check_stdvector_matrix(Vector4f()));
|
||
|
CALL_SUBTEST(check_stdvector_matrix(Matrix4f()));
|
||
|
CALL_SUBTEST(check_stdvector_matrix(Matrix4d()));
|
||
|
|
||
|
// some dynamic sizes
|
||
|
CALL_SUBTEST(check_stdvector_matrix(MatrixXd(1,1)));
|
||
|
CALL_SUBTEST(check_stdvector_matrix(VectorXd(20)));
|
||
|
CALL_SUBTEST(check_stdvector_matrix(RowVectorXf(20)));
|
||
|
CALL_SUBTEST(check_stdvector_matrix(MatrixXcf(10,10)));
|
||
|
|
||
|
// some Transform
|
||
|
CALL_SUBTEST(check_stdvector_transform(Transform2f()));
|
||
|
CALL_SUBTEST(check_stdvector_transform(Transform3f()));
|
||
|
CALL_SUBTEST(check_stdvector_transform(Transform3d()));
|
||
|
//CALL_SUBTEST(check_stdvector_transform(Transform4d()));
|
||
|
|
||
|
// some Quaternion
|
||
|
CALL_SUBTEST(check_stdvector_quaternion(Quaternionf()));
|
||
|
CALL_SUBTEST(check_stdvector_quaternion(Quaternionf()));
|
||
|
}
|