eigen/test/array_for_matrix.cpp

221 lines
9.4 KiB
C++
Raw Normal View History

2010-01-19 05:54:20 +08:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
2010-06-25 05:21:58 +08:00
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
2010-01-19 05:54:20 +08:00
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
template<typename MatrixType> void array_for_matrix(const MatrixType& m)
{
2010-06-20 23:37:56 +08:00
typedef typename MatrixType::Index Index;
2010-01-19 05:54:20 +08:00
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
2011-01-27 23:37:06 +08:00
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
2010-01-19 05:54:20 +08:00
2010-06-20 23:37:56 +08:00
Index rows = m.rows();
Index cols = m.cols();
2010-01-19 05:54:20 +08:00
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols);
2010-01-19 05:54:20 +08:00
ColVectorType cv1 = ColVectorType::Random(rows);
RowVectorType rv1 = RowVectorType::Random(cols);
Scalar s1 = internal::random<Scalar>(),
s2 = internal::random<Scalar>();
2010-01-19 05:54:20 +08:00
// scalar addition
VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array());
VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1);
VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) );
m3 = m1;
m3.array() += s2;
VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix());
m3 = m1;
m3.array() -= s1;
VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix());
// reductions
2011-03-15 16:42:22 +08:00
VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum().sum() - m1.sum(), m1.cwiseAbs().maxCoeff());
VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum().sum() - m1.sum(), m1.cwiseAbs().maxCoeff());
VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum() + m2.colwise().sum() - (m1+m2).colwise().sum(), (m1+m2).cwiseAbs().maxCoeff());
VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum() - m2.rowwise().sum() - (m1-m2).rowwise().sum(), (m1-m2).cwiseAbs().maxCoeff());
VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));
2010-01-19 05:54:20 +08:00
// vector-wise ops
m3 = m1;
VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
m3 = m1;
VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
m3 = m1;
VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
m3 = m1;
VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
// empty objects
VERIFY_IS_APPROX(m1.block(0,0,0,cols).colwise().sum(), RowVectorType::Zero(cols));
VERIFY_IS_APPROX(m1.block(0,0,rows,0).rowwise().prod(), ColVectorType::Ones(rows));
2011-01-27 23:37:06 +08:00
// verify the const accessors exist
const Scalar& ref_m1 = m.matrix().array().coeffRef(0);
const Scalar& ref_m2 = m.matrix().array().coeffRef(0,0);
const Scalar& ref_a1 = m.array().matrix().coeffRef(0);
const Scalar& ref_a2 = m.array().matrix().coeffRef(0,0);
VERIFY(&ref_a1 == &ref_m1);
VERIFY(&ref_a2 == &ref_m2);
2010-01-19 05:54:20 +08:00
}
template<typename MatrixType> void comparisons(const MatrixType& m)
{
2010-06-20 23:37:56 +08:00
typedef typename MatrixType::Index Index;
2010-01-19 05:54:20 +08:00
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
2010-06-20 23:37:56 +08:00
Index rows = m.rows();
Index cols = m.cols();
2010-01-19 05:54:20 +08:00
Index r = internal::random<Index>(0, rows-1),
c = internal::random<Index>(0, cols-1);
2010-01-19 05:54:20 +08:00
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols);
VERIFY(((m1.array() + Scalar(1)) > m1.array()).all());
VERIFY(((m1.array() - Scalar(1)) < m1.array()).all());
if (rows*cols>1)
{
m3 = m1;
m3(r,c) += 1;
VERIFY(! (m1.array() < m3.array()).all() );
VERIFY(! (m1.array() > m3.array()).all() );
}
// comparisons to scalar
VERIFY( (m1.array() != (m1(r,c)+1) ).any() );
VERIFY( (m1.array() > (m1(r,c)-1) ).any() );
VERIFY( (m1.array() < (m1(r,c)+1) ).any() );
VERIFY( (m1.array() == m1(r,c) ).any() );
// test Select
VERIFY_IS_APPROX( (m1.array()<m2.array()).select(m1,m2), m1.cwiseMin(m2) );
VERIFY_IS_APPROX( (m1.array()>m2.array()).select(m1,m2), m1.cwiseMax(m2) );
Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
for (int j=0; j<cols; ++j)
for (int i=0; i<rows; ++i)
m3(i,j) = internal::abs(m1(i,j))<mid ? 0 : m1(i,j);
2010-01-19 05:54:20 +08:00
VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
.select(MatrixType::Zero(rows,cols),m1), m3);
// shorter versions:
VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
.select(0,m1), m3);
VERIFY_IS_APPROX( (m1.array().abs()>=MatrixType::Constant(rows,cols,mid).array())
.select(m1,0), m3);
// even shorter version:
VERIFY_IS_APPROX( (m1.array().abs()<mid).select(0,m1), m3);
// count
VERIFY(((m1.array().abs()+1)>RealScalar(0.1)).count() == rows*cols);
typedef Matrix<typename MatrixType::Index, Dynamic, 1> VectorOfIndices;
2010-01-19 05:54:20 +08:00
// TODO allows colwise/rowwise for array
VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), VectorOfIndices::Constant(cols,rows).transpose());
VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorOfIndices::Constant(rows, cols));
2010-01-19 05:54:20 +08:00
}
template<typename VectorType> void lpNorm(const VectorType& v)
{
VectorType u = VectorType::Random(v.size());
VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff());
VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum());
VERIFY_IS_APPROX(u.template lpNorm<2>(), internal::sqrt(u.array().abs().square().sum()));
VERIFY_IS_APPROX(internal::pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum());
2010-01-19 05:54:20 +08:00
}
template<typename MatrixType> void cwise_min_max(const MatrixType& m)
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols);
// min/max with array
Scalar maxM1 = m1.maxCoeff();
Scalar minM1 = m1.minCoeff();
VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin(MatrixType::Constant(rows,cols, minM1)));
VERIFY_IS_APPROX(m1, m1.cwiseMin(MatrixType::Constant(rows,cols, maxM1)));
VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax(MatrixType::Constant(rows,cols, maxM1)));
VERIFY_IS_APPROX(m1, m1.cwiseMax(MatrixType::Constant(rows,cols, minM1)));
// min/max with scalar input
VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin( minM1));
VERIFY_IS_APPROX(m1, m1.cwiseMin( maxM1));
VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax( maxM1));
VERIFY_IS_APPROX(m1, m1.cwiseMax( minM1));
}
2010-01-19 05:54:20 +08:00
void test_array_for_matrix()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( array_for_matrix(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( array_for_matrix(Matrix2f()) );
CALL_SUBTEST_3( array_for_matrix(Matrix4d()) );
CALL_SUBTEST_4( array_for_matrix(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_5( array_for_matrix(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_6( array_for_matrix(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
2010-01-19 05:54:20 +08:00
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( comparisons(Matrix2f()) );
CALL_SUBTEST_3( comparisons(Matrix4d()) );
CALL_SUBTEST_5( comparisons(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_6( comparisons(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
2010-01-19 05:54:20 +08:00
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( cwise_min_max(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( cwise_min_max(Matrix2f()) );
CALL_SUBTEST_3( cwise_min_max(Matrix4d()) );
CALL_SUBTEST_5( cwise_min_max(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_6( cwise_min_max(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
}
2010-01-19 05:54:20 +08:00
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( lpNorm(Vector2f()) );
CALL_SUBTEST_7( lpNorm(Vector3d()) );
CALL_SUBTEST_8( lpNorm(Vector4f()) );
CALL_SUBTEST_5( lpNorm(VectorXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_4( lpNorm(VectorXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
2010-01-19 05:54:20 +08:00
}
}