eigen/unsupported/test/cxx11_tensor_block_eval.cpp

859 lines
31 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// clang-format off
#include "main.h"
#include <Eigen/CXX11/Tensor>
// clang-format on
using Eigen::internal::TensorBlockDescriptor;
using Eigen::internal::TensorExecutor;
// -------------------------------------------------------------------------- //
// Utility functions to generate random tensors, blocks, and evaluate them.
template <int NumDims>
static DSizes<Index, NumDims> RandomDims(Index min, Index max) {
DSizes<Index, NumDims> dims;
for (int i = 0; i < NumDims; ++i) {
dims[i] = internal::random<Index>(min, max);
}
return DSizes<Index, NumDims>(dims);
}
// Block offsets and extents allows to construct a TensorSlicingOp corresponding
// to a TensorBlockDescriptor.
template <int NumDims>
struct TensorBlockParams {
DSizes<Index, NumDims> offsets;
DSizes<Index, NumDims> sizes;
TensorBlockDescriptor<NumDims, Index> desc;
};
template <int Layout, int NumDims>
static TensorBlockParams<NumDims> RandomBlock(DSizes<Index, NumDims> dims,
Index min, Index max) {
// Choose random offsets and sizes along all tensor dimensions.
DSizes<Index, NumDims> offsets(RandomDims<NumDims>(min, max));
DSizes<Index, NumDims> sizes(RandomDims<NumDims>(min, max));
// Make sure that offset + size do not overflow dims.
for (int i = 0; i < NumDims; ++i) {
offsets[i] = numext::mini(dims[i] - 1, offsets[i]);
sizes[i] = numext::mini(sizes[i], dims[i] - offsets[i]);
}
Index offset = 0;
DSizes<Index, NumDims> strides = Eigen::internal::strides<Layout>(dims);
for (int i = 0; i < NumDims; ++i) {
offset += strides[i] * offsets[i];
}
return {offsets, sizes, TensorBlockDescriptor<NumDims, Index>(offset, sizes)};
}
// Generate block with block sizes skewed towards inner dimensions. This type of
// block is required for evaluating broadcast expressions.
template <int Layout, int NumDims>
static TensorBlockParams<NumDims> SkewedInnerBlock(
DSizes<Index, NumDims> dims) {
2019-12-11 07:40:23 +08:00
using BlockMapper = internal::TensorBlockMapper<NumDims, Layout, Index>;
BlockMapper block_mapper(dims,
2019-12-11 07:40:23 +08:00
{internal::TensorBlockShapeType::kSkewedInnerDims,
2019-12-19 04:07:00 +08:00
internal::random<size_t>(1, dims.TotalSize()),
{0, 0, 0}});
Index total_blocks = block_mapper.blockCount();
Index block_index = internal::random<Index>(0, total_blocks - 1);
auto block = block_mapper.blockDescriptor(block_index);
DSizes<Index, NumDims> sizes = block.dimensions();
auto strides = internal::strides<Layout>(dims);
DSizes<Index, NumDims> offsets;
// Compute offsets for the first block coefficient.
Index index = block.offset();
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = NumDims - 1; i > 0; --i) {
const Index idx = index / strides[i];
index -= idx * strides[i];
offsets[i] = idx;
}
if (NumDims > 0) offsets[0] = index;
} else {
for (int i = 0; i < NumDims - 1; ++i) {
const Index idx = index / strides[i];
index -= idx * strides[i];
offsets[i] = idx;
}
if (NumDims > 0) offsets[NumDims - 1] = index;
}
return {offsets, sizes, block};
}
template <int NumDims>
static TensorBlockParams<NumDims> FixedSizeBlock(DSizes<Index, NumDims> dims) {
DSizes<Index, NumDims> offsets;
for (int i = 0; i < NumDims; ++i) offsets[i] = 0;
return {offsets, dims, TensorBlockDescriptor<NumDims, Index>(0, dims)};
}
inline Eigen::IndexList<Index, Eigen::type2index<1>> NByOne(Index n) {
Eigen::IndexList<Index, Eigen::type2index<1>> ret;
ret.set(0, n);
return ret;
}
inline Eigen::IndexList<Eigen::type2index<1>, Index> OneByM(Index m) {
Eigen::IndexList<Eigen::type2index<1>, Index> ret;
ret.set(1, m);
return ret;
}
// -------------------------------------------------------------------------- //
// Verify that block expression evaluation produces the same result as a
// TensorSliceOp (reading a tensor block is same to taking a tensor slice).
template <typename T, int NumDims, int Layout, typename Expression,
typename GenBlockParams>
static void VerifyBlockEvaluator(Expression expr, GenBlockParams gen_block) {
using Device = DefaultDevice;
auto d = Device();
// Scratch memory allocator for block evaluation.
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
TensorBlockScratch scratch(d);
// TensorEvaluator is needed to produce tensor blocks of the expression.
auto eval = TensorEvaluator<const decltype(expr), Device>(expr, d);
eval.evalSubExprsIfNeeded(nullptr);
// Choose a random offsets, sizes and TensorBlockDescriptor.
TensorBlockParams<NumDims> block_params = gen_block();
// Evaluate TensorBlock expression into a tensor.
Tensor<T, NumDims, Layout> block(block_params.desc.dimensions());
// Dimensions for the potential destination buffer.
DSizes<Index, NumDims> dst_dims;
if (internal::random<bool>()) {
dst_dims = block_params.desc.dimensions();
} else {
for (int i = 0; i < NumDims; ++i) {
Index extent = internal::random<Index>(0, 5);
dst_dims[i] = block_params.desc.dimension(i) + extent;
}
}
// Maybe use this tensor as a block desc destination.
Tensor<T, NumDims, Layout> dst(dst_dims);
dst.setZero();
if (internal::random<bool>()) {
block_params.desc.template AddDestinationBuffer<Layout>(
dst.data(), internal::strides<Layout>(dst.dimensions()));
}
const bool root_of_expr = internal::random<bool>();
2019-12-11 07:40:23 +08:00
auto tensor_block = eval.block(block_params.desc, scratch, root_of_expr);
if (tensor_block.kind() == internal::TensorBlockKind::kMaterializedInOutput) {
// Copy data from destination buffer.
if (dimensions_match(dst.dimensions(), block.dimensions())) {
block = dst;
} else {
DSizes<Index, NumDims> offsets;
for (int i = 0; i < NumDims; ++i) offsets[i] = 0;
block = dst.slice(offsets, block.dimensions());
}
} else {
// Assign to block from expression.
auto b_expr = tensor_block.expr();
// We explicitly disable vectorization and tiling, to run a simple coefficient
// wise assignment loop, because it's very simple and should be correct.
using BlockAssign = TensorAssignOp<decltype(block), const decltype(b_expr)>;
using BlockExecutor = TensorExecutor<const BlockAssign, Device, false,
internal::TiledEvaluation::Off>;
BlockExecutor::run(BlockAssign(block, b_expr), d);
}
// Cleanup temporary buffers owned by a tensor block.
tensor_block.cleanup();
// Compute a Tensor slice corresponding to a Tensor block.
Tensor<T, NumDims, Layout> slice(block_params.desc.dimensions());
auto s_expr = expr.slice(block_params.offsets, block_params.sizes);
// Explicitly use coefficient assignment to evaluate slice expression.
using SliceAssign = TensorAssignOp<decltype(slice), const decltype(s_expr)>;
using SliceExecutor = TensorExecutor<const SliceAssign, Device, false,
internal::TiledEvaluation::Off>;
SliceExecutor::run(SliceAssign(slice, s_expr), d);
// Tensor block and tensor slice must be the same.
for (Index i = 0; i < block.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(block.coeff(i), slice.coeff(i));
}
}
// -------------------------------------------------------------------------- //
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_block() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> input(dims);
input.setRandom();
// Identity tensor expression transformation.
VerifyBlockEvaluator<T, NumDims, Layout>(
input, [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_unary_expr_block() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> input(dims);
input.setRandom();
VerifyBlockEvaluator<T, NumDims, Layout>(
input.abs(), [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_binary_expr_block() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> lhs(dims), rhs(dims);
lhs.setRandom();
rhs.setRandom();
VerifyBlockEvaluator<T, NumDims, Layout>(
lhs * rhs, [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_binary_with_unary_expr_block() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> lhs(dims), rhs(dims);
lhs.setRandom();
rhs.setRandom();
VerifyBlockEvaluator<T, NumDims, Layout>(
(lhs.square() + rhs.square()).sqrt(),
[&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_broadcast() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(1, 10);
Tensor<T, NumDims, Layout> input(dims);
input.setRandom();
DSizes<Index, NumDims> bcast = RandomDims<NumDims>(1, 5);
DSizes<Index, NumDims> bcasted_dims;
for (int i = 0; i < NumDims; ++i) bcasted_dims[i] = dims[i] * bcast[i];
VerifyBlockEvaluator<T, NumDims, Layout>(
input.broadcast(bcast),
[&bcasted_dims]() { return SkewedInnerBlock<Layout>(bcasted_dims); });
VerifyBlockEvaluator<T, NumDims, Layout>(
input.broadcast(bcast),
[&bcasted_dims]() { return RandomBlock<Layout>(bcasted_dims, 5, 10); });
VerifyBlockEvaluator<T, NumDims, Layout>(
input.broadcast(bcast),
[&bcasted_dims]() { return FixedSizeBlock(bcasted_dims); });
// Check that desc.destination() memory is not shared between two broadcast
// materializations.
VerifyBlockEvaluator<T, NumDims, Layout>(
input.broadcast(bcast) * input.abs().broadcast(bcast),
[&bcasted_dims]() { return SkewedInnerBlock<Layout>(bcasted_dims); });
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_reshape() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(1, 10);
DSizes<Index, NumDims> shuffled = dims;
std::shuffle(&shuffled[0], &shuffled[NumDims - 1], std::mt19937(g_seed));
Tensor<T, NumDims, Layout> input(dims);
input.setRandom();
VerifyBlockEvaluator<T, NumDims, Layout>(
input.reshape(shuffled),
[&shuffled]() { return RandomBlock<Layout>(shuffled, 1, 10); });
VerifyBlockEvaluator<T, NumDims, Layout>(
input.reshape(shuffled),
[&shuffled]() { return SkewedInnerBlock<Layout>(shuffled); });
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_cast() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> input(dims);
input.setRandom();
VerifyBlockEvaluator<T, NumDims, Layout>(
input.template cast<int>().template cast<T>(),
[&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_select() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> lhs(dims);
Tensor<T, NumDims, Layout> rhs(dims);
Tensor<bool, NumDims, Layout> cond(dims);
lhs.setRandom();
rhs.setRandom();
cond.setRandom();
VerifyBlockEvaluator<T, NumDims, Layout>(cond.select(lhs, rhs), [&dims]() {
return RandomBlock<Layout>(dims, 1, 20);
});
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_padding() {
const int inner_dim = Layout == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> input(dims);
input.setRandom();
DSizes<Index, NumDims> pad_before = RandomDims<NumDims>(0, 4);
DSizes<Index, NumDims> pad_after = RandomDims<NumDims>(0, 4);
array<std::pair<Index, Index>, NumDims> paddings;
for (int i = 0; i < NumDims; ++i) {
paddings[i] = std::make_pair(pad_before[i], pad_after[i]);
}
// Test squeezing reads from inner dim.
if (internal::random<bool>()) {
pad_before[inner_dim] = 0;
pad_after[inner_dim] = 0;
paddings[inner_dim] = std::make_pair(0, 0);
}
DSizes<Index, NumDims> padded_dims;
for (int i = 0; i < NumDims; ++i) {
padded_dims[i] = dims[i] + pad_before[i] + pad_after[i];
}
VerifyBlockEvaluator<T, NumDims, Layout>(
input.pad(paddings),
[&padded_dims]() { return FixedSizeBlock(padded_dims); });
VerifyBlockEvaluator<T, NumDims, Layout>(
input.pad(paddings),
[&padded_dims]() { return RandomBlock<Layout>(padded_dims, 1, 10); });
VerifyBlockEvaluator<T, NumDims, Layout>(
input.pad(paddings),
[&padded_dims]() { return SkewedInnerBlock<Layout>(padded_dims); });
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_chipping() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> input(dims);
input.setRandom();
Index chip_dim = internal::random<int>(0, NumDims - 1);
Index chip_offset = internal::random<Index>(0, dims[chip_dim] - 2);
DSizes<Index, NumDims - 1> chipped_dims;
for (Index i = 0; i < chip_dim; ++i) {
chipped_dims[i] = dims[i];
}
for (Index i = chip_dim + 1; i < NumDims; ++i) {
chipped_dims[i - 1] = dims[i];
}
// Block buffer forwarding.
VerifyBlockEvaluator<T, NumDims - 1, Layout>(
input.chip(chip_offset, chip_dim),
[&chipped_dims]() { return FixedSizeBlock(chipped_dims); });
VerifyBlockEvaluator<T, NumDims - 1, Layout>(
input.chip(chip_offset, chip_dim),
[&chipped_dims]() { return RandomBlock<Layout>(chipped_dims, 1, 10); });
// Block expression assignment.
VerifyBlockEvaluator<T, NumDims - 1, Layout>(
input.abs().chip(chip_offset, chip_dim),
[&chipped_dims]() { return FixedSizeBlock(chipped_dims); });
VerifyBlockEvaluator<T, NumDims - 1, Layout>(
input.abs().chip(chip_offset, chip_dim),
[&chipped_dims]() { return RandomBlock<Layout>(chipped_dims, 1, 10); });
}
template<typename T, int NumDims>
struct SimpleTensorGenerator {
T operator()(const array<Index, NumDims>& coords) const {
T result = static_cast<T>(0);
for (int i = 0; i < NumDims; ++i) {
result += static_cast<T>((i + 1) * coords[i]);
}
return result;
}
};
// Boolean specialization to avoid -Wint-in-bool-context warnings on GCC.
template<int NumDims>
struct SimpleTensorGenerator<bool, NumDims> {
bool operator()(const array<Index, NumDims>& coords) const {
bool result = false;
for (int i = 0; i < NumDims; ++i) {
result ^= coords[i];
}
return result;
}
};
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_generator() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> input(dims);
input.setRandom();
auto generator = SimpleTensorGenerator<T, NumDims>();
VerifyBlockEvaluator<T, NumDims, Layout>(
input.generate(generator), [&dims]() { return FixedSizeBlock(dims); });
VerifyBlockEvaluator<T, NumDims, Layout>(
input.generate(generator),
[&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_reverse() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> input(dims);
input.setRandom();
// Randomly reverse dimensions.
Eigen::DSizes<bool, NumDims> reverse;
for (int i = 0; i < NumDims; ++i) reverse[i] = internal::random<bool>();
VerifyBlockEvaluator<T, NumDims, Layout>(
input.reverse(reverse), [&dims]() { return FixedSizeBlock(dims); });
VerifyBlockEvaluator<T, NumDims, Layout>(input.reverse(reverse), [&dims]() {
return RandomBlock<Layout>(dims, 1, 10);
});
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_slice() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> input(dims);
input.setRandom();
// Pick a random slice of an input tensor.
DSizes<Index, NumDims> slice_start = RandomDims<NumDims>(5, 10);
DSizes<Index, NumDims> slice_size = RandomDims<NumDims>(5, 10);
// Make sure that slice start + size do not overflow tensor dims.
for (int i = 0; i < NumDims; ++i) {
slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]);
slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]);
}
VerifyBlockEvaluator<T, NumDims, Layout>(
input.slice(slice_start, slice_size),
[&slice_size]() { return FixedSizeBlock(slice_size); });
VerifyBlockEvaluator<T, NumDims, Layout>(
input.slice(slice_start, slice_size),
[&slice_size]() { return RandomBlock<Layout>(slice_size, 1, 10); });
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_shuffle() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(5, 15);
Tensor<T, NumDims, Layout> input(dims);
input.setRandom();
DSizes<Index, NumDims> shuffle;
for (int i = 0; i < NumDims; ++i) shuffle[i] = i;
do {
DSizes<Index, NumDims> shuffled_dims;
for (int i = 0; i < NumDims; ++i) shuffled_dims[i] = dims[shuffle[i]];
VerifyBlockEvaluator<T, NumDims, Layout>(
input.shuffle(shuffle),
[&shuffled_dims]() { return FixedSizeBlock(shuffled_dims); });
VerifyBlockEvaluator<T, NumDims, Layout>(
input.shuffle(shuffle), [&shuffled_dims]() {
return RandomBlock<Layout>(shuffled_dims, 1, 5);
});
break;
} while (std::next_permutation(&shuffle[0], &shuffle[0] + NumDims));
}
template <typename T, int Layout>
static void test_eval_tensor_reshape_with_bcast() {
Index dim = internal::random<Index>(1, 100);
Tensor<T, 2, Layout> lhs(1, dim);
Tensor<T, 2, Layout> rhs(dim, 1);
lhs.setRandom();
rhs.setRandom();
auto reshapeLhs = NByOne(dim);
auto reshapeRhs = OneByM(dim);
auto bcastLhs = OneByM(dim);
auto bcastRhs = NByOne(dim);
DSizes<Index, 2> dims(dim, dim);
VerifyBlockEvaluator<T, 2, Layout>(
lhs.reshape(reshapeLhs).broadcast(bcastLhs) *
rhs.reshape(reshapeRhs).broadcast(bcastRhs),
[dims]() { return SkewedInnerBlock<Layout, 2>(dims); });
}
template <typename T, int Layout>
static void test_eval_tensor_forced_eval() {
Index dim = internal::random<Index>(1, 100);
Tensor<T, 2, Layout> lhs(dim, 1);
Tensor<T, 2, Layout> rhs(1, dim);
lhs.setRandom();
rhs.setRandom();
auto bcastLhs = OneByM(dim);
auto bcastRhs = NByOne(dim);
DSizes<Index, 2> dims(dim, dim);
VerifyBlockEvaluator<T, 2, Layout>(
(lhs.broadcast(bcastLhs) * rhs.broadcast(bcastRhs)).eval().reshape(dims),
[dims]() { return SkewedInnerBlock<Layout, 2>(dims); });
VerifyBlockEvaluator<T, 2, Layout>(
(lhs.broadcast(bcastLhs) * rhs.broadcast(bcastRhs)).eval().reshape(dims),
[dims]() { return RandomBlock<Layout, 2>(dims, 1, 50); });
}
template <typename T, int Layout>
static void test_eval_tensor_chipping_of_bcast() {
if (Layout != static_cast<int>(RowMajor)) return;
Index dim0 = internal::random<Index>(1, 10);
Index dim1 = internal::random<Index>(1, 10);
Index dim2 = internal::random<Index>(1, 10);
Tensor<T, 3, Layout> input(1, dim1, dim2);
input.setRandom();
Eigen::array<Index, 3> bcast = {{dim0, 1, 1}};
DSizes<Index, 2> chipped_dims(dim0, dim2);
VerifyBlockEvaluator<T, 2, Layout>(
input.broadcast(bcast).chip(0, 1),
[chipped_dims]() { return FixedSizeBlock(chipped_dims); });
VerifyBlockEvaluator<T, 2, Layout>(
input.broadcast(bcast).chip(0, 1),
[chipped_dims]() { return SkewedInnerBlock<Layout, 2>(chipped_dims); });
VerifyBlockEvaluator<T, 2, Layout>(
input.broadcast(bcast).chip(0, 1),
[chipped_dims]() { return RandomBlock<Layout, 2>(chipped_dims, 1, 5); });
}
// -------------------------------------------------------------------------- //
// Verify that assigning block to a Tensor expression produces the same result
// as an assignment to TensorSliceOp (writing a block is is identical to
// assigning one tensor to a slice of another tensor).
template <typename T, int NumDims, int Layout, int NumExprDims = NumDims,
typename Expression, typename GenBlockParams>
static void VerifyBlockAssignment(Tensor<T, NumDims, Layout>& tensor,
Expression expr, GenBlockParams gen_block) {
using Device = DefaultDevice;
auto d = Device();
// We use tensor evaluator as a target for block and slice assignments.
auto eval = TensorEvaluator<decltype(expr), Device>(expr, d);
// Generate a random block, or choose a block that fits in full expression.
TensorBlockParams<NumExprDims> block_params = gen_block();
// Generate random data of the selected block size.
Tensor<T, NumExprDims, Layout> block(block_params.desc.dimensions());
block.setRandom();
// ************************************************************************ //
// (1) Assignment from a block.
// Construct a materialize block from a random generated block tensor.
internal::TensorMaterializedBlock<T, NumExprDims, Layout> blk(
internal::TensorBlockKind::kView, block.data(), block.dimensions());
// Reset all underlying tensor values to zero.
tensor.setZero();
// Use evaluator to write block into a tensor.
2019-12-11 07:40:23 +08:00
eval.writeBlock(block_params.desc, blk);
// Make a copy of the result after assignment.
Tensor<T, NumDims, Layout> block_assigned = tensor;
// ************************************************************************ //
// (2) Assignment to a slice
// Reset all underlying tensor values to zero.
tensor.setZero();
// Assign block to a slice of original expression
auto s_expr = expr.slice(block_params.offsets, block_params.sizes);
// Explicitly use coefficient assignment to evaluate slice expression.
using SliceAssign = TensorAssignOp<decltype(s_expr), const decltype(block)>;
using SliceExecutor = TensorExecutor<const SliceAssign, Device, false,
internal::TiledEvaluation::Off>;
SliceExecutor::run(SliceAssign(s_expr, block), d);
// Make a copy of the result after assignment.
Tensor<T, NumDims, Layout> slice_assigned = tensor;
for (Index i = 0; i < tensor.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(block_assigned.coeff(i), slice_assigned.coeff(i));
}
}
// -------------------------------------------------------------------------- //
template <typename T, int NumDims, int Layout>
static void test_assign_to_tensor() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> tensor(dims);
TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims);
VerifyBlockAssignment<T, NumDims, Layout>(
tensor, map, [&dims]() { return RandomBlock<Layout>(dims, 10, 20); });
VerifyBlockAssignment<T, NumDims, Layout>(
tensor, map, [&dims]() { return FixedSizeBlock(dims); });
}
template <typename T, int NumDims, int Layout>
static void test_assign_to_tensor_reshape() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> tensor(dims);
TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims);
DSizes<Index, NumDims> shuffled = dims;
std::shuffle(&shuffled[0], &shuffled[NumDims - 1], std::mt19937(g_seed));
VerifyBlockAssignment<T, NumDims, Layout>(
tensor, map.reshape(shuffled),
[&shuffled]() { return RandomBlock<Layout>(shuffled, 1, 10); });
VerifyBlockAssignment<T, NumDims, Layout>(
tensor, map.reshape(shuffled),
[&shuffled]() { return SkewedInnerBlock<Layout>(shuffled); });
VerifyBlockAssignment<T, NumDims, Layout>(
tensor, map.reshape(shuffled),
[&shuffled]() { return FixedSizeBlock(shuffled); });
}
template <typename T, int NumDims, int Layout>
static void test_assign_to_tensor_chipping() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> tensor(dims);
Index chip_dim = internal::random<int>(0, NumDims - 1);
Index chip_offset = internal::random<Index>(0, dims[chip_dim] - 2);
DSizes<Index, NumDims - 1> chipped_dims;
for (Index i = 0; i < chip_dim; ++i) {
chipped_dims[i] = dims[i];
}
for (Index i = chip_dim + 1; i < NumDims; ++i) {
chipped_dims[i - 1] = dims[i];
}
TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims);
VerifyBlockAssignment<T, NumDims, Layout, NumDims - 1>(
tensor, map.chip(chip_offset, chip_dim),
[&chipped_dims]() { return RandomBlock<Layout>(chipped_dims, 1, 10); });
VerifyBlockAssignment<T, NumDims, Layout, NumDims - 1>(
tensor, map.chip(chip_offset, chip_dim),
[&chipped_dims]() { return SkewedInnerBlock<Layout>(chipped_dims); });
VerifyBlockAssignment<T, NumDims, Layout, NumDims - 1>(
tensor, map.chip(chip_offset, chip_dim),
[&chipped_dims]() { return FixedSizeBlock(chipped_dims); });
}
template <typename T, int NumDims, int Layout>
static void test_assign_to_tensor_slice() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> tensor(dims);
// Pick a random slice of tensor.
DSizes<Index, NumDims> slice_start = RandomDims<NumDims>(5, 10);
DSizes<Index, NumDims> slice_size = RandomDims<NumDims>(5, 10);
// Make sure that slice start + size do not overflow tensor dims.
for (int i = 0; i < NumDims; ++i) {
slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]);
slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]);
}
TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims);
VerifyBlockAssignment<T, NumDims, Layout>(
tensor, map.slice(slice_start, slice_size),
[&slice_size]() { return RandomBlock<Layout>(slice_size, 1, 10); });
VerifyBlockAssignment<T, NumDims, Layout>(
tensor, map.slice(slice_start, slice_size),
[&slice_size]() { return SkewedInnerBlock<Layout>(slice_size); });
VerifyBlockAssignment<T, NumDims, Layout>(
tensor, map.slice(slice_start, slice_size),
[&slice_size]() { return FixedSizeBlock(slice_size); });
}
template <typename T, int NumDims, int Layout>
static void test_assign_to_tensor_shuffle() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(5, 15);
Tensor<T, NumDims, Layout> tensor(dims);
DSizes<Index, NumDims> shuffle;
for (int i = 0; i < NumDims; ++i) shuffle[i] = i;
TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims);
do {
DSizes<Index, NumDims> shuffled_dims;
for (int i = 0; i < NumDims; ++i) shuffled_dims[i] = dims[shuffle[i]];
VerifyBlockAssignment<T, NumDims, Layout>(
tensor, map.shuffle(shuffle),
[&shuffled_dims]() { return FixedSizeBlock(shuffled_dims); });
VerifyBlockAssignment<T, NumDims, Layout>(
tensor, map.shuffle(shuffle), [&shuffled_dims]() {
return RandomBlock<Layout>(shuffled_dims, 1, 5);
});
} while (std::next_permutation(&shuffle[0], &shuffle[0] + NumDims));
}
// -------------------------------------------------------------------------- //
#define CALL_SUBTEST_PART(PART) \
CALL_SUBTEST_##PART
#define CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(PART, NAME) \
CALL_SUBTEST_PART(PART)((NAME<float, 1, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 2, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 3, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 4, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 5, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 1, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 2, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 4, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 4, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 5, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<int, 1, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<int, 2, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<int, 3, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<int, 4, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<int, 5, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<int, 1, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<int, 2, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<int, 4, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<int, 4, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<int, 5, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<bool, 1, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<bool, 2, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<bool, 3, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<bool, 4, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<bool, 5, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<bool, 1, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<bool, 2, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<bool, 4, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<bool, 4, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<bool, 5, ColMajor>()))
#define CALL_SUBTESTS_DIMS_LAYOUTS(PART, NAME) \
CALL_SUBTEST_PART(PART)((NAME<float, 1, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 2, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 3, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 4, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 5, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 1, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 2, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 4, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 4, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, 5, ColMajor>()))
#define CALL_SUBTESTS_LAYOUTS_TYPES(PART, NAME) \
CALL_SUBTEST_PART(PART)((NAME<float, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<float, ColMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<bool, RowMajor>())); \
CALL_SUBTEST_PART(PART)((NAME<bool, ColMajor>()))
EIGEN_DECLARE_TEST(cxx11_tensor_block_eval) {
// clang-format off
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(1, test_eval_tensor_block);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(1, test_eval_tensor_binary_expr_block);
CALL_SUBTESTS_DIMS_LAYOUTS(1, test_eval_tensor_unary_expr_block);
CALL_SUBTESTS_DIMS_LAYOUTS(2, test_eval_tensor_binary_with_unary_expr_block);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(2, test_eval_tensor_broadcast);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(2, test_eval_tensor_reshape);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(3, test_eval_tensor_cast);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(3, test_eval_tensor_select);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(3, test_eval_tensor_padding);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(4, test_eval_tensor_chipping);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(4, test_eval_tensor_generator);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(4, test_eval_tensor_reverse);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(5, test_eval_tensor_slice);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(5, test_eval_tensor_shuffle);
CALL_SUBTESTS_LAYOUTS_TYPES(6, test_eval_tensor_reshape_with_bcast);
CALL_SUBTESTS_LAYOUTS_TYPES(6, test_eval_tensor_forced_eval);
CALL_SUBTESTS_LAYOUTS_TYPES(6, test_eval_tensor_chipping_of_bcast);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(7, test_assign_to_tensor);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(7, test_assign_to_tensor_reshape);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(7, test_assign_to_tensor_chipping);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(8, test_assign_to_tensor_slice);
CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(8, test_assign_to_tensor_shuffle);
// Force CMake to split this test.
// EIGEN_SUFFIXES;1;2;3;4;5;6;7;8
// clang-format on
}