eigen/test/product.cpp

114 lines
4.3 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
namespace Eigen {
template<typename MatrixType> void product(const MatrixType& m)
{
/* this test covers the following files:
Identity.h Product.h
*/
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
int rows = m.rows();
int cols = m.cols();
// this test relies a lot on Random.h, and there's not much more that we can do
// to test it, hence I consider that we will have tested Random.h
MatrixType m1 = MatrixType::random(rows, cols),
m2 = MatrixType::random(rows, cols),
m3(rows, cols),
mzero = MatrixType::zero(rows, cols);
SquareMatrixType
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::identity(rows, rows),
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::random(rows, rows);
VectorType v1 = VectorType::random(rows),
v2 = VectorType::random(rows),
vzero = VectorType::zero(rows);
Scalar s1 = ei_random<Scalar>();
int r = ei_random<int>(0, rows-1),
c = ei_random<int>(0, cols-1);
// begin testing Product.h: only associativity for now
// (we use Transpose.h but this doesn't count as a test for it)
VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
m3 = m1;
m3 *= (m1.transpose() * m2);
VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
VERIFY_IS_APPROX(m3, m1.lazy() * (m1.transpose()*m2));
// continue testing Product.h: distributivity
VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2);
VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2);
// continue testing Product.h: compatibility with ScalarMultiple.h
VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1);
VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1));
// continue testing Product.h: lazy product
VERIFY_IS_APPROX(square.lazy() * m1, square*m1);
VERIFY_IS_APPROX(square * m1.lazy(), square*m1);
// again, test operator() to check const-qualification
s1 += (square.lazy() * m1)(r,c);
// test Product.h together with Identity.h
VERIFY_IS_APPROX(m1, identity*m1);
VERIFY_IS_APPROX(v1, identity*v1);
// again, test operator() to check const-qualification
VERIFY_IS_APPROX(MatrixType::identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
if (rows!=cols)
VERIFY_RAISES_ASSERT(m3 = m1*m1);
}
void EigenTest::testProduct()
{
for(int i = 0; i < m_repeat; i++) {
product(Matrix<float, 1, 1>());
product(Matrix<float, 3, 3>());
product(Matrix<float, 4, 2>());
product(Matrix4d());
}
for(int i = 0; i < m_repeat; i++) {
int rows = ei_random<int>(1,320);
int cols = ei_random<int>(1,320);
product(MatrixXf(rows, cols));
product(MatrixXd(rows, cols));
product(MatrixXi(rows, cols));
product(MatrixXcf(rows, cols));
product(MatrixXcd(rows, cols));
}
}
} // namespace Eigen