/** \page TopicMultiThreading Eigen and multi-threading
\section TopicMultiThreading_MakingEigenMT Make Eigen run in parallel
Some Eigen's algorithms can exploit the multiple cores present in your hardware. To this end, it is enough to enable OpenMP on your compiler, for instance:
* GCC: \c -fopenmp
* ICC: \c -openmp
* MSVC: check the respective option in the build properties.
Unless setNbThreads has been called, Eigen uses the number of threads specified by OpenMP. You can restore this behavior by calling \code setNbThreads(0); \endcode
\section TopicMultiThreading_UsingEigenWithMT Using Eigen in a multi-threaded application
In the case your own application is multithreaded, and multiple threads make calls to Eigen, then you have to initialize Eigen by calling the following routine \b before creating the threads:
\note With Eigen 3.3, and a fully C++11 compliant compiler (i.e., <a href="http://en.cppreference.com/w/cpp/language/storage_duration#Static_local_variables">thread-safe static local variable initialization</a>), then calling \c initParallel() is optional.
\warning note that all functions generating random matrices are \b not re-entrant nor thread-safe. Those include DenseBase::Random(), and DenseBase::setRandom() despite a call to Eigen::initParallel(). This is because these functions are based on std::rand which is not re-entrant. For thread-safe random generator, we recommend the use of boost::random or c++11 random feature.