mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
158 lines
4.4 KiB
C++
158 lines
4.4 KiB
C++
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
|
||
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
||
|
#define EIGEN_TEST_NO_COMPLEX
|
||
|
#define EIGEN_TEST_FUNC cxx11_tensor_sycl
|
||
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
|
||
|
#define EIGEN_USE_SYCL
|
||
|
|
||
|
#include "main.h"
|
||
|
#include <unsupported/Eigen/CXX11/Tensor>
|
||
|
|
||
|
using Eigen::array;
|
||
|
using Eigen::SyclDevice;
|
||
|
using Eigen::Tensor;
|
||
|
using Eigen::TensorMap;
|
||
|
|
||
|
// Types used in tests:
|
||
|
using TestTensor = Tensor<float, 3>;
|
||
|
using TestTensorMap = TensorMap<Tensor<float, 3>>;
|
||
|
|
||
|
void test_sycl_cpu() {
|
||
|
cl::sycl::gpu_selector s;
|
||
|
cl::sycl::queue q(s, [=](cl::sycl::exception_list l) {
|
||
|
for (const auto& e : l) {
|
||
|
try {
|
||
|
std::rethrow_exception(e);
|
||
|
} catch (cl::sycl::exception e) {
|
||
|
std::cout << e.what() << std::endl;
|
||
|
}
|
||
|
}
|
||
|
});
|
||
|
SyclDevice sycl_device(q);
|
||
|
|
||
|
int sizeDim1 = 100;
|
||
|
int sizeDim2 = 100;
|
||
|
int sizeDim3 = 100;
|
||
|
array<int, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
|
||
|
TestTensor in1(tensorRange);
|
||
|
TestTensor in2(tensorRange);
|
||
|
TestTensor in3(tensorRange);
|
||
|
TestTensor out(tensorRange);
|
||
|
in1 = in1.random();
|
||
|
in2 = in2.random();
|
||
|
in3 = in3.random();
|
||
|
TestTensorMap gpu_in1(in1.data(), tensorRange);
|
||
|
TestTensorMap gpu_in2(in2.data(), tensorRange);
|
||
|
TestTensorMap gpu_in3(in3.data(), tensorRange);
|
||
|
TestTensorMap gpu_out(out.data(), tensorRange);
|
||
|
|
||
|
/// a=1.2f
|
||
|
gpu_in1.device(sycl_device) = gpu_in1.constant(1.2f);
|
||
|
sycl_device.deallocate(in1.data());
|
||
|
for (int i = 0; i < sizeDim1; ++i) {
|
||
|
for (int j = 0; j < sizeDim2; ++j) {
|
||
|
for (int k = 0; k < sizeDim3; ++k) {
|
||
|
VERIFY_IS_APPROX(in1(i,j,k), 1.2f);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
printf("a=1.2f Test passed\n");
|
||
|
|
||
|
/// a=b*1.2f
|
||
|
gpu_out.device(sycl_device) = gpu_in1 * 1.2f;
|
||
|
sycl_device.deallocate(out.data());
|
||
|
for (int i = 0; i < sizeDim1; ++i) {
|
||
|
for (int j = 0; j < sizeDim2; ++j) {
|
||
|
for (int k = 0; k < sizeDim3; ++k) {
|
||
|
VERIFY_IS_APPROX(out(i,j,k),
|
||
|
in1(i,j,k) * 1.2f);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
printf("a=b*1.2f Test Passed\n");
|
||
|
|
||
|
/// c=a*b
|
||
|
gpu_out.device(sycl_device) = gpu_in1 * gpu_in2;
|
||
|
sycl_device.deallocate(out.data());
|
||
|
for (int i = 0; i < sizeDim1; ++i) {
|
||
|
for (int j = 0; j < sizeDim2; ++j) {
|
||
|
for (int k = 0; k < sizeDim3; ++k) {
|
||
|
VERIFY_IS_APPROX(out(i,j,k),
|
||
|
in1(i,j,k) *
|
||
|
in2(i,j,k));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
printf("c=a*b Test Passed\n");
|
||
|
|
||
|
/// c=a+b
|
||
|
gpu_out.device(sycl_device) = gpu_in1 + gpu_in2;
|
||
|
sycl_device.deallocate(out.data());
|
||
|
for (int i = 0; i < sizeDim1; ++i) {
|
||
|
for (int j = 0; j < sizeDim2; ++j) {
|
||
|
for (int k = 0; k < sizeDim3; ++k) {
|
||
|
VERIFY_IS_APPROX(out(i,j,k),
|
||
|
in1(i,j,k) +
|
||
|
in2(i,j,k));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
printf("c=a+b Test Passed\n");
|
||
|
|
||
|
/// c=a*a
|
||
|
gpu_out.device(sycl_device) = gpu_in1 * gpu_in1;
|
||
|
sycl_device.deallocate(out.data());
|
||
|
for (int i = 0; i < sizeDim1; ++i) {
|
||
|
for (int j = 0; j < sizeDim2; ++j) {
|
||
|
for (int k = 0; k < sizeDim3; ++k) {
|
||
|
VERIFY_IS_APPROX(out(i,j,k),
|
||
|
in1(i,j,k) *
|
||
|
in1(i,j,k));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
printf("c= a*a Test Passed\n");
|
||
|
|
||
|
//a*3.14f + b*2.7f
|
||
|
gpu_out.device(sycl_device) = gpu_in1 * gpu_in1.constant(3.14f) + gpu_in2 * gpu_in2.constant(2.7f);
|
||
|
sycl_device.deallocate(out.data());
|
||
|
for (int i = 0; i < sizeDim1; ++i) {
|
||
|
for (int j = 0; j < sizeDim2; ++j) {
|
||
|
for (int k = 0; k < sizeDim3; ++k) {
|
||
|
VERIFY_IS_APPROX(out(i,j,k),
|
||
|
in1(i,j,k) * 3.14f
|
||
|
+ in2(i,j,k) * 2.7f);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
printf("a*3.14f + b*2.7f Test Passed\n");
|
||
|
|
||
|
///d= (a>0.5? b:c)
|
||
|
gpu_out.device(sycl_device) =(gpu_in1 > gpu_in1.constant(0.5f)).select(gpu_in2, gpu_in3);
|
||
|
sycl_device.deallocate(out.data());
|
||
|
for (int i = 0; i < sizeDim1; ++i) {
|
||
|
for (int j = 0; j < sizeDim2; ++j) {
|
||
|
for (int k = 0; k < sizeDim3; ++k) {
|
||
|
VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) > 0.5f)
|
||
|
? in2(i, j, k)
|
||
|
: in3(i, j, k));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
printf("d= (a>0.5? b:c) Test Passed\n");
|
||
|
|
||
|
}
|
||
|
void test_cxx11_tensor_sycl() {
|
||
|
CALL_SUBTEST(test_sycl_cpu());
|
||
|
}
|