mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
84 lines
2.1 KiB
C++
84 lines
2.1 KiB
C++
|
|
||
|
#include <Eigen/Array>
|
||
|
#include <bench/BenchUtil.h>
|
||
|
using namespace Eigen;
|
||
|
|
||
|
#ifndef REPEAT
|
||
|
#define REPEAT 100000
|
||
|
#endif
|
||
|
|
||
|
#ifndef TRIES
|
||
|
#define TRIES 20
|
||
|
#endif
|
||
|
|
||
|
typedef double Scalar;
|
||
|
|
||
|
template <typename MatrixType>
|
||
|
__attribute__ ((noinline)) void bench_reverse(const MatrixType& m)
|
||
|
{
|
||
|
int rows = m.rows();
|
||
|
int cols = m.cols();
|
||
|
int size = m.size();
|
||
|
|
||
|
int repeats = (REPEAT*1000)/size;
|
||
|
MatrixType a = MatrixType::Random(rows,cols);
|
||
|
MatrixType b = MatrixType::Random(rows,cols);
|
||
|
|
||
|
BenchTimer timerB, timerH, timerV;
|
||
|
|
||
|
Scalar acc = 0;
|
||
|
int r = ei_random<int>(0,rows-1);
|
||
|
int c = ei_random<int>(0,cols-1);
|
||
|
for (int t=0; t<TRIES; ++t)
|
||
|
{
|
||
|
timerB.start();
|
||
|
for (int k=0; k<repeats; ++k)
|
||
|
{
|
||
|
asm("#begin foo");
|
||
|
b = a.reverse();
|
||
|
asm("#end foo");
|
||
|
acc += b.coeff(r,c);
|
||
|
}
|
||
|
timerB.stop();
|
||
|
}
|
||
|
|
||
|
if (MatrixType::RowsAtCompileTime==Dynamic)
|
||
|
std::cout << "dyn ";
|
||
|
else
|
||
|
std::cout << "fixed ";
|
||
|
std::cout << rows << " x " << cols << " \t"
|
||
|
<< (timerB.value() * REPEAT) / repeats << "s "
|
||
|
<< "(" << 1e-6 * size*repeats/timerB.value() << " MFLOPS)\t";
|
||
|
|
||
|
std::cout << "\n";
|
||
|
// make sure the compiler does not optimize too much
|
||
|
if (acc==123)
|
||
|
std::cout << acc;
|
||
|
}
|
||
|
|
||
|
int main(int argc, char* argv[])
|
||
|
{
|
||
|
const int dynsizes[] = {4,6,8,16,24,32,49,64,128,256,512,900,0};
|
||
|
std::cout << "size no sqrt standard";
|
||
|
// #ifdef BENCH_GSL
|
||
|
// std::cout << " GSL (standard + double + ATLAS) ";
|
||
|
// #endif
|
||
|
std::cout << "\n";
|
||
|
for (uint i=0; dynsizes[i]>0; ++i)
|
||
|
{
|
||
|
bench_reverse(Matrix<Scalar,Dynamic,Dynamic>(dynsizes[i],dynsizes[i]));
|
||
|
bench_reverse(Matrix<Scalar,Dynamic,1>(dynsizes[i]*dynsizes[i]));
|
||
|
}
|
||
|
// bench_reverse(Matrix<Scalar,2,2>());
|
||
|
// bench_reverse(Matrix<Scalar,3,3>());
|
||
|
// bench_reverse(Matrix<Scalar,4,4>());
|
||
|
// bench_reverse(Matrix<Scalar,5,5>());
|
||
|
// bench_reverse(Matrix<Scalar,6,6>());
|
||
|
// bench_reverse(Matrix<Scalar,7,7>());
|
||
|
// bench_reverse(Matrix<Scalar,8,8>());
|
||
|
// bench_reverse(Matrix<Scalar,12,12>());
|
||
|
// bench_reverse(Matrix<Scalar,16,16>());
|
||
|
return 0;
|
||
|
}
|
||
|
|