eigen/test/bfloat16_float.cpp

379 lines
18 KiB
C++
Raw Normal View History

2020-06-21 03:16:24 +08:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <sstream>
#include <memory>
#include <math.h>
#include "main.h"
#include <Eigen/src/Core/arch/Default/BFloat16.h>
#define VERIFY_BFLOAT16_BITS_EQUAL(h, bits) \
VERIFY_IS_EQUAL((numext::bit_cast<numext::uint16_t>(h)), (static_cast<numext::uint16_t>(bits)))
2020-06-21 03:16:24 +08:00
// Make sure it's possible to forward declare Eigen::bfloat16
namespace Eigen {
struct bfloat16;
}
using Eigen::bfloat16;
float BinaryToFloat(uint32_t sign, uint32_t exponent, uint32_t high_mantissa,
uint32_t low_mantissa) {
float dest;
uint32_t src = (sign << 31) + (exponent << 23) + (high_mantissa << 16) + low_mantissa;
memcpy(static_cast<void*>(&dest),
static_cast<const void*>(&src), sizeof(dest));
return dest;
}
template<typename T>
void test_roundtrip() {
// Representable T round trip via bfloat16
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(-std::numeric_limits<T>::infinity()))), -std::numeric_limits<T>::infinity());
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(std::numeric_limits<T>::infinity()))), std::numeric_limits<T>::infinity());
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(T(-1.0)))), T(-1.0));
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(T(-0.5)))), T(-0.5));
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(T(-0.0)))), T(-0.0));
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(T(1.0)))), T(1.0));
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(T(0.5)))), T(0.5));
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(T(0.0)))), T(0.0));
}
2020-06-21 03:16:24 +08:00
void test_conversion()
{
using Eigen::bfloat16_impl::__bfloat16_raw;
// Round-trip casts
VERIFY_IS_EQUAL(
numext::bit_cast<bfloat16>(numext::bit_cast<numext::uint16_t>(bfloat16(1.0f))),
bfloat16(1.0f));
VERIFY_IS_EQUAL(
numext::bit_cast<bfloat16>(numext::bit_cast<numext::uint16_t>(bfloat16(0.5f))),
bfloat16(0.5f));
VERIFY_IS_EQUAL(
numext::bit_cast<bfloat16>(numext::bit_cast<numext::uint16_t>(bfloat16(-0.33333f))),
bfloat16(-0.33333f));
VERIFY_IS_EQUAL(
numext::bit_cast<bfloat16>(numext::bit_cast<numext::uint16_t>(bfloat16(0.0f))),
bfloat16(0.0f));
2020-06-21 03:16:24 +08:00
// Conversion from float.
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(1.0f), 0x3f80);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.5f), 0x3f00);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.33333f), 0x3eab);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(3.38e38f), 0x7f7e);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(3.40e38f), 0x7f80); // Becomes infinity.
2020-06-21 03:16:24 +08:00
// Verify round-to-nearest-even behavior.
float val1 = static_cast<float>(bfloat16(__bfloat16_raw(0x3c00)));
float val2 = static_cast<float>(bfloat16(__bfloat16_raw(0x3c01)));
float val3 = static_cast<float>(bfloat16(__bfloat16_raw(0x3c02)));
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.5f * (val1 + val2)), 0x3c00);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.5f * (val2 + val3)), 0x3c02);
2020-06-21 03:16:24 +08:00
// Conversion from int.
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(-1), 0xbf80);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0), 0x0000);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(1), 0x3f80);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(2), 0x4000);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(3), 0x4040);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(12), 0x4140);
2020-06-21 03:16:24 +08:00
// Conversion from bool.
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(false), 0x0000);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(true), 0x3f80);
2020-06-21 03:16:24 +08:00
// Conversion to bool
VERIFY_IS_EQUAL(static_cast<bool>(bfloat16(3)), true);
VERIFY_IS_EQUAL(static_cast<bool>(bfloat16(0.33333f)), true);
VERIFY_IS_EQUAL(bfloat16(-0.0), false);
VERIFY_IS_EQUAL(static_cast<bool>(bfloat16(0.0)), false);
// Explicit conversion to float.
2020-06-21 03:16:24 +08:00
VERIFY_IS_EQUAL(static_cast<float>(bfloat16(__bfloat16_raw(0x0000))), 0.0f);
VERIFY_IS_EQUAL(static_cast<float>(bfloat16(__bfloat16_raw(0x3f80))), 1.0f);
// Implicit conversion to float
VERIFY_IS_EQUAL(bfloat16(__bfloat16_raw(0x0000)), 0.0f);
VERIFY_IS_EQUAL(bfloat16(__bfloat16_raw(0x3f80)), 1.0f);
2020-06-21 03:16:24 +08:00
// Zero representations
VERIFY_IS_EQUAL(bfloat16(0.0f), bfloat16(0.0f));
VERIFY_IS_EQUAL(bfloat16(-0.0f), bfloat16(0.0f));
VERIFY_IS_EQUAL(bfloat16(-0.0f), bfloat16(-0.0f));
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.0f), 0x0000);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(-0.0f), 0x8000);
2020-06-21 03:16:24 +08:00
// Default is zero
VERIFY_IS_EQUAL(static_cast<float>(bfloat16()), 0.0f);
// Representable floats round trip via bfloat16
test_roundtrip<float>();
test_roundtrip<double>();
test_roundtrip<std::complex<float> >();
test_roundtrip<std::complex<double> >();
2020-06-21 03:16:24 +08:00
// Conversion
Array<float,1,100> a;
for (int i = 0; i < 100; i++) a(i) = i + 1.25;
Array<bfloat16,1,100> b = a.cast<bfloat16>();
Array<float,1,100> c = b.cast<float>();
for (int i = 0; i < 100; ++i) {
VERIFY_LE(numext::abs(c(i) - a(i)), a(i) / 128);
}
// Epsilon
VERIFY_LE(1.0f, static_cast<float>((std::numeric_limits<bfloat16>::epsilon)() + bfloat16(1.0f)));
VERIFY_IS_EQUAL(1.0f, static_cast<float>((std::numeric_limits<bfloat16>::epsilon)() / bfloat16(2.0f) + bfloat16(1.0f)));
// Negate
VERIFY_IS_EQUAL(static_cast<float>(-bfloat16(3.0f)), -3.0f);
VERIFY_IS_EQUAL(static_cast<float>(-bfloat16(-4.5f)), 4.5f);
#if !EIGEN_COMP_MSVC
// Visual Studio errors out on divisions by 0
VERIFY((numext::isnan)(static_cast<float>(bfloat16(0.0 / 0.0))));
VERIFY((numext::isinf)(static_cast<float>(bfloat16(1.0 / 0.0))));
VERIFY((numext::isinf)(static_cast<float>(bfloat16(-1.0 / 0.0))));
// Visual Studio errors out on divisions by 0
VERIFY((numext::isnan)(bfloat16(0.0 / 0.0)));
VERIFY((numext::isinf)(bfloat16(1.0 / 0.0)));
VERIFY((numext::isinf)(bfloat16(-1.0 / 0.0)));
#endif
// NaNs and infinities.
VERIFY(!(numext::isinf)(static_cast<float>(bfloat16(3.38e38f)))); // Largest finite number.
VERIFY(!(numext::isnan)(static_cast<float>(bfloat16(0.0f))));
VERIFY((numext::isinf)(static_cast<float>(bfloat16(__bfloat16_raw(0xff80)))));
VERIFY((numext::isnan)(static_cast<float>(bfloat16(__bfloat16_raw(0xffc0)))));
VERIFY((numext::isinf)(static_cast<float>(bfloat16(__bfloat16_raw(0x7f80)))));
VERIFY((numext::isnan)(static_cast<float>(bfloat16(__bfloat16_raw(0x7fc0)))));
// Exactly same checks as above, just directly on the bfloat16 representation.
VERIFY(!(numext::isinf)(bfloat16(__bfloat16_raw(0x7bff))));
VERIFY(!(numext::isnan)(bfloat16(__bfloat16_raw(0x0000))));
VERIFY((numext::isinf)(bfloat16(__bfloat16_raw(0xff80))));
VERIFY((numext::isnan)(bfloat16(__bfloat16_raw(0xffc0))));
VERIFY((numext::isinf)(bfloat16(__bfloat16_raw(0x7f80))));
VERIFY((numext::isnan)(bfloat16(__bfloat16_raw(0x7fc0))));
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(BinaryToFloat(0x0, 0xff, 0x40, 0x0)), 0x7fc0);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(BinaryToFloat(0x1, 0xff, 0x40, 0x0)), 0xffc0);
2020-06-21 03:16:24 +08:00
}
void test_numtraits()
{
std::cout << "epsilon = " << NumTraits<bfloat16>::epsilon() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>(NumTraits<bfloat16>::epsilon()) << ")" << std::endl;
std::cout << "highest = " << NumTraits<bfloat16>::highest() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>(NumTraits<bfloat16>::highest()) << ")" << std::endl;
std::cout << "lowest = " << NumTraits<bfloat16>::lowest() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>(NumTraits<bfloat16>::lowest()) << ")" << std::endl;
std::cout << "min = " << (std::numeric_limits<bfloat16>::min)() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>((std::numeric_limits<bfloat16>::min)()) << ")" << std::endl;
std::cout << "denorm min = " << (std::numeric_limits<bfloat16>::denorm_min)() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>((std::numeric_limits<bfloat16>::denorm_min)()) << ")" << std::endl;
std::cout << "infinity = " << NumTraits<bfloat16>::infinity() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>(NumTraits<bfloat16>::infinity()) << ")" << std::endl;
std::cout << "quiet nan = " << NumTraits<bfloat16>::quiet_NaN() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>(NumTraits<bfloat16>::quiet_NaN()) << ")" << std::endl;
std::cout << "signaling nan = " << std::numeric_limits<bfloat16>::signaling_NaN() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>(std::numeric_limits<bfloat16>::signaling_NaN()) << ")" << std::endl;
2020-06-21 03:16:24 +08:00
VERIFY(NumTraits<bfloat16>::IsSigned);
VERIFY_IS_EQUAL(
numext::bit_cast<numext::uint16_t>(std::numeric_limits<bfloat16>::infinity()),
numext::bit_cast<numext::uint16_t>(bfloat16(std::numeric_limits<float>::infinity())) );
// There is no guarantee that casting a 32-bit NaN to bfloat16 has a precise
// bit pattern. We test that it is in fact a NaN, then test the signaling
// bit (msb of significand is 1 for quiet, 0 for signaling).
const numext::uint16_t BFLOAT16_QUIET_BIT = 0x0040;
VERIFY(
(numext::isnan)(std::numeric_limits<bfloat16>::quiet_NaN())
&& (numext::isnan)(bfloat16(std::numeric_limits<float>::quiet_NaN()))
&& ((numext::bit_cast<numext::uint16_t>(std::numeric_limits<bfloat16>::quiet_NaN()) & BFLOAT16_QUIET_BIT) > 0)
&& ((numext::bit_cast<numext::uint16_t>(bfloat16(std::numeric_limits<float>::quiet_NaN())) & BFLOAT16_QUIET_BIT) > 0) );
// After a cast to bfloat16, a signaling NaN may become non-signaling. Thus,
// we check that both are NaN, and that only the `numeric_limits` version is
// signaling.
VERIFY(
(numext::isnan)(std::numeric_limits<bfloat16>::signaling_NaN())
&& (numext::isnan)(bfloat16(std::numeric_limits<float>::signaling_NaN()))
&& ((numext::bit_cast<numext::uint16_t>(std::numeric_limits<bfloat16>::signaling_NaN()) & BFLOAT16_QUIET_BIT) == 0) );
2020-06-21 03:16:24 +08:00
VERIFY( (std::numeric_limits<bfloat16>::min)() > bfloat16(0.f) );
VERIFY( (std::numeric_limits<bfloat16>::denorm_min)() > bfloat16(0.f) );
VERIFY_IS_EQUAL( (std::numeric_limits<bfloat16>::denorm_min)()/bfloat16(2), bfloat16(0.f) );
}
void test_arithmetic()
{
VERIFY_IS_EQUAL(static_cast<float>(bfloat16(2) + bfloat16(2)), 4);
VERIFY_IS_EQUAL(static_cast<float>(bfloat16(2) + bfloat16(-2)), 0);
VERIFY_IS_APPROX(static_cast<float>(bfloat16(0.33333f) + bfloat16(0.66667f)), 1.0f);
VERIFY_IS_EQUAL(static_cast<float>(bfloat16(2.0f) * bfloat16(-5.5f)), -11.0f);
VERIFY_IS_APPROX(static_cast<float>(bfloat16(1.0f) / bfloat16(3.0f)), 0.3339f);
VERIFY_IS_EQUAL(static_cast<float>(-bfloat16(4096.0f)), -4096.0f);
VERIFY_IS_EQUAL(static_cast<float>(-bfloat16(-4096.0f)), 4096.0f);
}
void test_comparison()
{
VERIFY(bfloat16(1.0f) > bfloat16(0.5f));
VERIFY(bfloat16(0.5f) < bfloat16(1.0f));
VERIFY(!(bfloat16(1.0f) < bfloat16(0.5f)));
VERIFY(!(bfloat16(0.5f) > bfloat16(1.0f)));
VERIFY(!(bfloat16(4.0f) > bfloat16(4.0f)));
VERIFY(!(bfloat16(4.0f) < bfloat16(4.0f)));
VERIFY(!(bfloat16(0.0f) < bfloat16(-0.0f)));
VERIFY(!(bfloat16(-0.0f) < bfloat16(0.0f)));
VERIFY(!(bfloat16(0.0f) > bfloat16(-0.0f)));
VERIFY(!(bfloat16(-0.0f) > bfloat16(0.0f)));
VERIFY(bfloat16(0.2f) > bfloat16(-1.0f));
VERIFY(bfloat16(-1.0f) < bfloat16(0.2f));
VERIFY(bfloat16(-16.0f) < bfloat16(-15.0f));
VERIFY(bfloat16(1.0f) == bfloat16(1.0f));
VERIFY(bfloat16(1.0f) != bfloat16(2.0f));
// Comparisons with NaNs and infinities.
#if !EIGEN_COMP_MSVC
// Visual Studio errors out on divisions by 0
VERIFY(!(bfloat16(0.0 / 0.0) == bfloat16(0.0 / 0.0)));
VERIFY(bfloat16(0.0 / 0.0) != bfloat16(0.0 / 0.0));
VERIFY(!(bfloat16(1.0) == bfloat16(0.0 / 0.0)));
VERIFY(!(bfloat16(1.0) < bfloat16(0.0 / 0.0)));
VERIFY(!(bfloat16(1.0) > bfloat16(0.0 / 0.0)));
VERIFY(bfloat16(1.0) != bfloat16(0.0 / 0.0));
VERIFY(bfloat16(1.0) < bfloat16(1.0 / 0.0));
VERIFY(bfloat16(1.0) > bfloat16(-1.0 / 0.0));
#endif
}
void test_basic_functions()
{
VERIFY_IS_EQUAL(static_cast<float>(numext::abs(bfloat16(3.5f))), 3.5f);
VERIFY_IS_EQUAL(static_cast<float>(abs(bfloat16(3.5f))), 3.5f);
VERIFY_IS_EQUAL(static_cast<float>(numext::abs(bfloat16(-3.5f))), 3.5f);
VERIFY_IS_EQUAL(static_cast<float>(abs(bfloat16(-3.5f))), 3.5f);
VERIFY_IS_EQUAL(static_cast<float>(numext::floor(bfloat16(3.5f))), 3.0f);
VERIFY_IS_EQUAL(static_cast<float>(floor(bfloat16(3.5f))), 3.0f);
VERIFY_IS_EQUAL(static_cast<float>(numext::floor(bfloat16(-3.5f))), -4.0f);
VERIFY_IS_EQUAL(static_cast<float>(floor(bfloat16(-3.5f))), -4.0f);
VERIFY_IS_EQUAL(static_cast<float>(numext::ceil(bfloat16(3.5f))), 4.0f);
VERIFY_IS_EQUAL(static_cast<float>(ceil(bfloat16(3.5f))), 4.0f);
VERIFY_IS_EQUAL(static_cast<float>(numext::ceil(bfloat16(-3.5f))), -3.0f);
VERIFY_IS_EQUAL(static_cast<float>(ceil(bfloat16(-3.5f))), -3.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::sqrt(bfloat16(0.0f))), 0.0f);
VERIFY_IS_APPROX(static_cast<float>(sqrt(bfloat16(0.0f))), 0.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::sqrt(bfloat16(4.0f))), 2.0f);
VERIFY_IS_APPROX(static_cast<float>(sqrt(bfloat16(4.0f))), 2.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::pow(bfloat16(0.0f), bfloat16(1.0f))), 0.0f);
VERIFY_IS_APPROX(static_cast<float>(pow(bfloat16(0.0f), bfloat16(1.0f))), 0.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::pow(bfloat16(2.0f), bfloat16(2.0f))), 4.0f);
VERIFY_IS_APPROX(static_cast<float>(pow(bfloat16(2.0f), bfloat16(2.0f))), 4.0f);
VERIFY_IS_EQUAL(static_cast<float>(numext::exp(bfloat16(0.0f))), 1.0f);
VERIFY_IS_EQUAL(static_cast<float>(exp(bfloat16(0.0f))), 1.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::exp(bfloat16(EIGEN_PI))), 20.f + static_cast<float>(EIGEN_PI));
VERIFY_IS_APPROX(static_cast<float>(exp(bfloat16(EIGEN_PI))), 20.f + static_cast<float>(EIGEN_PI));
VERIFY_IS_EQUAL(static_cast<float>(numext::expm1(bfloat16(0.0f))), 0.0f);
VERIFY_IS_EQUAL(static_cast<float>(expm1(bfloat16(0.0f))), 0.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::expm1(bfloat16(2.0f))), 6.375f);
VERIFY_IS_APPROX(static_cast<float>(expm1(bfloat16(2.0f))), 6.375f);
VERIFY_IS_EQUAL(static_cast<float>(numext::log(bfloat16(1.0f))), 0.0f);
VERIFY_IS_EQUAL(static_cast<float>(log(bfloat16(1.0f))), 0.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::log(bfloat16(10.0f))), 2.296875f);
VERIFY_IS_APPROX(static_cast<float>(log(bfloat16(10.0f))), 2.296875f);
VERIFY_IS_EQUAL(static_cast<float>(numext::log1p(bfloat16(0.0f))), 0.0f);
VERIFY_IS_EQUAL(static_cast<float>(log1p(bfloat16(0.0f))), 0.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::log1p(bfloat16(10.0f))), 2.390625f);
VERIFY_IS_APPROX(static_cast<float>(log1p(bfloat16(10.0f))), 2.390625f);
}
void test_trigonometric_functions()
{
VERIFY_IS_APPROX(numext::cos(bfloat16(0.0f)), bfloat16(cosf(0.0f)));
VERIFY_IS_APPROX(cos(bfloat16(0.0f)), bfloat16(cosf(0.0f)));
VERIFY_IS_APPROX(numext::cos(bfloat16(EIGEN_PI)), bfloat16(cosf(EIGEN_PI)));
// VERIFY_IS_APPROX(numext::cos(bfloat16(EIGEN_PI/2)), bfloat16(cosf(EIGEN_PI/2)));
// VERIFY_IS_APPROX(numext::cos(bfloat16(3*EIGEN_PI/2)), bfloat16(cosf(3*EIGEN_PI/2)));
VERIFY_IS_APPROX(numext::cos(bfloat16(3.5f)), bfloat16(cosf(3.5f)));
VERIFY_IS_APPROX(numext::sin(bfloat16(0.0f)), bfloat16(sinf(0.0f)));
VERIFY_IS_APPROX(sin(bfloat16(0.0f)), bfloat16(sinf(0.0f)));
// VERIFY_IS_APPROX(numext::sin(bfloat16(EIGEN_PI)), bfloat16(sinf(EIGEN_PI)));
VERIFY_IS_APPROX(numext::sin(bfloat16(EIGEN_PI/2)), bfloat16(sinf(EIGEN_PI/2)));
VERIFY_IS_APPROX(numext::sin(bfloat16(3*EIGEN_PI/2)), bfloat16(sinf(3*EIGEN_PI/2)));
VERIFY_IS_APPROX(numext::sin(bfloat16(3.5f)), bfloat16(sinf(3.5f)));
VERIFY_IS_APPROX(numext::tan(bfloat16(0.0f)), bfloat16(tanf(0.0f)));
VERIFY_IS_APPROX(tan(bfloat16(0.0f)), bfloat16(tanf(0.0f)));
// VERIFY_IS_APPROX(numext::tan(bfloat16(EIGEN_PI)), bfloat16(tanf(EIGEN_PI)));
// VERIFY_IS_APPROX(numext::tan(bfloat16(EIGEN_PI/2)), bfloat16(tanf(EIGEN_PI/2)));
// VERIFY_IS_APPROX(numext::tan(bfloat16(3*EIGEN_PI/2)), bfloat16(tanf(3*EIGEN_PI/2)));
VERIFY_IS_APPROX(numext::tan(bfloat16(3.5f)), bfloat16(tanf(3.5f)));
}
void test_array()
{
typedef Array<bfloat16,1,Dynamic> ArrayXh;
Index size = internal::random<Index>(1,10);
Index i = internal::random<Index>(0,size-1);
ArrayXh a1 = ArrayXh::Random(size), a2 = ArrayXh::Random(size);
VERIFY_IS_APPROX( a1+a1, bfloat16(2)*a1 );
VERIFY( (a1.abs() >= bfloat16(0)).all() );
VERIFY_IS_APPROX( (a1*a1).sqrt(), a1.abs() );
VERIFY( ((a1.min)(a2) <= (a1.max)(a2)).all() );
a1(i) = bfloat16(-10.);
VERIFY_IS_EQUAL( a1.minCoeff(), bfloat16(-10.) );
a1(i) = bfloat16(10.);
VERIFY_IS_EQUAL( a1.maxCoeff(), bfloat16(10.) );
std::stringstream ss;
ss << a1;
}
void test_product()
{
typedef Matrix<bfloat16,Dynamic,Dynamic> MatrixXh;
Index rows = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE);
Index cols = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE);
Index depth = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE);
MatrixXh Ah = MatrixXh::Random(rows,depth);
MatrixXh Bh = MatrixXh::Random(depth,cols);
MatrixXh Ch = MatrixXh::Random(rows,cols);
MatrixXf Af = Ah.cast<float>();
MatrixXf Bf = Bh.cast<float>();
MatrixXf Cf = Ch.cast<float>();
VERIFY_IS_APPROX(Ch.noalias()+=Ah*Bh, (Cf.noalias()+=Af*Bf).cast<bfloat16>());
}
EIGEN_DECLARE_TEST(bfloat16_float)
{
CALL_SUBTEST(test_numtraits());
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST(test_conversion());
CALL_SUBTEST(test_arithmetic());
CALL_SUBTEST(test_comparison());
CALL_SUBTEST(test_basic_functions());
CALL_SUBTEST(test_trigonometric_functions());
CALL_SUBTEST(test_array());
CALL_SUBTEST(test_product());
}
}