eigen/test/dynalloc.cpp

176 lines
4.4 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
2010-06-25 05:21:58 +08:00
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#if EIGEN_MAX_ALIGN_BYTES>0
#define ALIGNMENT EIGEN_MAX_ALIGN_BYTES
#else
#define ALIGNMENT 1
#endif
typedef Matrix<float,8,1> Vector8f;
void check_handmade_aligned_malloc()
{
for(int i = 1; i < 1000; i++)
{
char *p = (char*)internal::handmade_aligned_malloc(i);
VERIFY(size_t(p)%ALIGNMENT==0);
// if the buffer is wrongly allocated this will give a bad write --> check with valgrind
for(int j = 0; j < i; j++) p[j]=0;
internal::handmade_aligned_free(p);
}
}
void check_aligned_malloc()
{
for(int i = 1; i < 1000; i++)
{
char *p = (char*)internal::aligned_malloc(i);
VERIFY(size_t(p)%ALIGNMENT==0);
// if the buffer is wrongly allocated this will give a bad write --> check with valgrind
for(int j = 0; j < i; j++) p[j]=0;
internal::aligned_free(p);
}
}
void check_aligned_new()
{
for(int i = 1; i < 1000; i++)
{
float *p = internal::aligned_new<float>(i);
VERIFY(size_t(p)%ALIGNMENT==0);
// if the buffer is wrongly allocated this will give a bad write --> check with valgrind
for(int j = 0; j < i; j++) p[j]=0;
internal::aligned_delete(p,i);
}
}
void check_aligned_stack_alloc()
{
for(int i = 1; i < 400; i++)
{
ei_declare_aligned_stack_constructed_variable(float,p,i,0);
VERIFY(size_t(p)%ALIGNMENT==0);
// if the buffer is wrongly allocated this will give a bad write --> check with valgrind
for(int j = 0; j < i; j++) p[j]=0;
}
}
// test compilation with both a struct and a class...
struct MyStruct
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
char dummychar;
Vector8f avec;
};
class MyClassA
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
char dummychar;
Vector8f avec;
};
template<typename T> void check_dynaligned()
{
// TODO have to be updated once we support multiple alignment values
if(T::SizeAtCompileTime % ALIGNMENT == 0)
{
T* obj = new T;
VERIFY(T::NeedsToAlign==1);
VERIFY(size_t(obj)%ALIGNMENT==0);
delete obj;
}
}
2014-07-30 15:32:35 +08:00
template<typename T> void check_custom_new_delete()
{
{
T* t = new T;
delete t;
}
{
std::size_t N = internal::random<std::size_t>(1,10);
T* t = new T[N];
delete[] t;
}
#if EIGEN_MAX_ALIGN_BYTES>0
2014-07-30 15:32:35 +08:00
{
T* t = static_cast<T *>((T::operator new)(sizeof(T)));
(T::operator delete)(t, sizeof(T));
}
{
T* t = static_cast<T *>((T::operator new)(sizeof(T)));
(T::operator delete)(t);
}
#endif
}
void test_dynalloc()
{
// low level dynamic memory allocation
CALL_SUBTEST(check_handmade_aligned_malloc());
CALL_SUBTEST(check_aligned_malloc());
CALL_SUBTEST(check_aligned_new());
CALL_SUBTEST(check_aligned_stack_alloc());
for (int i=0; i<g_repeat*100; ++i)
{
2014-07-30 15:32:35 +08:00
CALL_SUBTEST( check_custom_new_delete<Vector4f>() );
CALL_SUBTEST( check_custom_new_delete<Vector2f>() );
CALL_SUBTEST( check_custom_new_delete<Matrix4f>() );
CALL_SUBTEST( check_custom_new_delete<MatrixXi>() );
}
// check static allocation, who knows ?
#if EIGEN_MAX_STATIC_ALIGN_BYTES
for (int i=0; i<g_repeat*100; ++i)
{
CALL_SUBTEST(check_dynaligned<Vector4f>() );
CALL_SUBTEST(check_dynaligned<Vector2d>() );
CALL_SUBTEST(check_dynaligned<Matrix4f>() );
CALL_SUBTEST(check_dynaligned<Vector4d>() );
CALL_SUBTEST(check_dynaligned<Vector4i>() );
CALL_SUBTEST(check_dynaligned<Vector8f>() );
}
{
MyStruct foo0; VERIFY(size_t(foo0.avec.data())%ALIGNMENT==0);
MyClassA fooA; VERIFY(size_t(fooA.avec.data())%ALIGNMENT==0);
}
// dynamic allocation, single object
for (int i=0; i<g_repeat*100; ++i)
{
MyStruct *foo0 = new MyStruct(); VERIFY(size_t(foo0->avec.data())%ALIGNMENT==0);
MyClassA *fooA = new MyClassA(); VERIFY(size_t(fooA->avec.data())%ALIGNMENT==0);
delete foo0;
delete fooA;
}
// dynamic allocation, array
const int N = 10;
for (int i=0; i<g_repeat*100; ++i)
{
MyStruct *foo0 = new MyStruct[N]; VERIFY(size_t(foo0->avec.data())%ALIGNMENT==0);
MyClassA *fooA = new MyClassA[N]; VERIFY(size_t(fooA->avec.data())%ALIGNMENT==0);
delete[] foo0;
delete[] fooA;
}
#endif
}